AD-R155 488  ACTA AERODYNAMICA SINICAC(U) FOREIGN TECHNdEhéi-DIJ
WRIGHT-PATTERSON AFB OH 38 APR 85 FTD-ID(RS)T-1168-84

UNCLASSIFIED F/G 2074

b4
-~




w : )
.
' Ao

L

I gun gun 4
' iy

e J2s jas

Lo & w

———— u=
o =

.. =

1.8

DS s g

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS-1963-A




-------

FTD-ID(RS)T-1168;8h

FOREIGN TECHNOLOGY DIVISION

-

AD-A155 4g9

ACTA AERODYNAMICA SINICA

Approved for public release;
distribution unlimited.

5 28 133

-----
............

D

'l'f'"'.l"l. s 4T,

'l ‘l . .
LA P
[} r] l.

" [ LY '.'
."t'.‘.lﬁ.f"."
s twty iy

Y




Ev----vv-v\.‘-\.‘;'.-r-x‘r'\r'\ L Sl Ak e g et il i el Aadh Al el /el et W Sttt R vediadeli Sl SIC Sl & I SRR S S SR AP ALAC AN AP S TP I AR IP LU A A AT AC L IR
> .
»
o

'\.: . .

0,

FTD-ID(RS)T-1168-84

,
94

"":"';'.';",:'.i"';f IL"':":.';":V.'I’.'..'T

EDITED TRANSLATION

1]
)
AN
) -y

&

FTD-ID(RS)T-1168-8% 30 April 1985

¥

e e v S . .
T A R
AR St
P &

2o Wt B I)

MICROFICHE NR: FTD-85-C-000269
ACTA AERODYNAMICA SINICA

English pages: 131

Source: Konggi Donglixue Xuebao, Nr. 1, 1984,
pp. 1-39; 49-63; T1-84; 100-105

Country of origin: China
Translated by: SCITRAN
F33657-84-E-0165
Requester: FTD/TQTA
Approved for public release; distribution unlimited.

3 o

3 -

b -

3 THIS TRANSLATION IS A RENDITION OF THE ORIGI.

. NAL FOREIGN TEXT WITHOUT ANY ANAL YTICAL OR e

[ . EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY: >
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE o

. AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION

g OR OPINION OF THE FOREIGN TECHNOLOGY DI- FOREIGN TECHNOLOGY DIVISION re

s VISION, WP.AFB, OMIO. o

p o

1

- .

[ FTD —ID(RS)T-1168-84 Date 30 Apr ]9 85

3 E———————

13

S

3

\

N

b

3

L

~

g T S D T e S S T P

e e e L e e i e S I e I e e




Accession For

Uniannounced

Justification _ -

NTIS GRA&I E ‘
DTIC TAB 0

? By.
. Dist:ibugjon/

i o - lAvail and/op
s A Dist Special

Table of Contents

Avail;bility Codes

’ A

A Boundary Element Technique in

Determination of the Inviscid Flow Field

Flows Using the Smoke Wire Technique;_gy

Xia XueJian .s.vieeeescecsacecassssssnssossnasscas

The Application of Surface Hot Film in

Aerodynamic Testing, by Wang Tiecheng .........

The Exploration of the Spatial Oscillations
in Finite Difference Solutions for Navier-SQf@kes
Shocks, by Zhang Hanxin ...ccecececacsccccacnnsccans

Calculation of Boundary Layer Growth -Behind an
Unsteady Expansion Wave in a Tube) by Wang Songgao

Numerical Computation for Inviscid Supersonic
Flow Around a Bent Coneiny Ji Chuqun ...veeeeoas

Theory of Similarity and the Profile of the
Mean Density Distribution of Hypersonic Boundary
Layer, by Cai Shutang ....c¢cceecoesnscccsoscscsccss

The Engineering Numerical Technique for the

Heating Rate on Ballistic Re-entry Vehicles,
by Yang Maozhao, He Fangshang .c..ccoeecesocans

Visualization of Three Dimensional Separated

Measurement of the Correlation Between the
Fluctuating Pressure and the Fluctuating Velocity
in a Turbulent Boundary Layer, by J.F. Morrison,

P. Bradsh&wW ....teetssssnessensssossssssvasnsasasans

Graphics Disclaimer .....cecceeeocoscccnccccansoccsns

Transonic Flow! Dy Yang Zuoshelg ..ccceeesacencones

ceceeasasess 104

cerreeeaaa.s 122

Zana i i aolt vt i sl e G - S St Bl B Sl i Wil Mgt /e i gt e

- -
IRy




L et dint Mol Aag Bad Aes Sad Sk Aok Aed A]

t
o .a & % T R et -

GRAPHICS DISCLAIMER

All figures, graphics, tables eguations, etc. merged into this
translation were extracted from the best quality copy available.

b
-"_—\-
b~
R
i’: ..-
e

w..

&‘“:

N 2. A0 2% A0
" RS
L

2

v,

a
“a

v .
Fatl
K

i v

2

-
e

-, .
N
LA

'
[N

® ii

PRI

e

s

l..’

F e . S e o« n e - - - . -

LR S A - AT, . ST T e e T U s e s T = AL Tt e T et e e s
oAt ,4,'-,'“'".' AR e e e e e e e e e '-.“{ .;u}\‘-‘..n.. o ..‘\..\-__ I RN S
O A R A YW I WL I PV N DRI FRT VIR IS TS D o WO LI Sh SRS SR AR} LRl L T TN T e R - -




A e T e i e CAee A AS. b Tamndti e B U PIMACR s Yt B S S SO Mt R e e BRI AR Al R 3 ""W‘.';'*-“-”.'ﬁ"il"'.“'.'b’.\‘-.

1168-84 _f

A Boundary Element Technique in Transonic Flow /1 ij
Yang Zuosheng s

(Nanjing Aeronautical Institute) 3

I. Introduction

The name ''boundary element'" originates from C.A. Brebbia[1].
The characteristic of the boundary element technique is that all
the nodal unknowns are located on the surface boundary.
Consequently, the numerical calculation is simplified and the
required computer capacity is reduced. In this work, this
technique was extended to the nonlinear transonic flow about a
three-dimensional wing. A weighted residual formula suited for
the transonic range was established and directly applied to the
full velocity potential equation. 1In order to ensure the
irreversibility of shock waves and to facilitate the solution to
converge in the supercritical flow region, we added an artificial
viscosity term to the full velocity potential equation.
Furthermore, the flow field was divided into small subdomains and the
Green theorem was applied to each element. If the selected
interpolation function has C1 continuity with respect to the
velocity potential ¢ for every element, then the surface

v
2

integrals of two neighboring elements cancel each other at the
interface so that the remaining surface integral (consequently
the nodal unknown) is located on the wing boundary. Thus, the
boundary element integral equation was derived.
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II.. Full Velocity Potential Equation with Artificial Viscosity
The three-dimensional continuity equation is:

a(pU)+a(pP’)+ o) _
ox oy 9z

%
Iy

0
(D

where the x-axis is the flow direction, y-axis points at the
right wing and x, y and z form an orthogonal right-handed
coordinate. The full velocity potential equation for a
nonviscous potential flow can be derived from equation (1):
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-WU¢--"WV¢.,+(a’-—W’)nﬁ,,}= 0 (2)

where P is density and a is speed of sound. U = ¢x, = 6 and W
= ¢ represent the three velocity components along x, y and z
axes, respectively.

In the supercritical flow region, the following artificial
compressibility (viscosity) was added to prevent an expansion
shock wave solution and to eliminate any shock wave discontinuity
by referring to equation (1):

{&lvwa ]2l *‘“‘aq,f;’]*%[""“f—;]} (3)

where uq = AX, uy = Ay, u3z = AZ. A is a switch function.

A=max- O,I—M: /2

(01 -37) o
When the local flow Mach number M is less than M A is zero. 1In
this work, MZ = 0.8. 8ap/ax,8p/0y and a3p/dz represent the partial
differentiation of p in the x, y and z direction, respectively.
If the artificial compressibility term (3) is superimposed onto
the continuity equation (1), the local density will be replaced
by the value upstream when the local Mach number exceeds Mc in
order to permit receiving information from upstream. After
expanding equation (3) and adding it to equation (2), the
artificially viscous full velocity potential equation can be
expressed as (in tensor symbols and abbreviated format):

K.,é .i=0; 1,j=1,2,3
(5)

where

K.’I’[d,,’ﬂ“¢. l¢| i‘A(a,,a:¢, .¢, g) +A(6,,a'—¢_ f¢i. '¢’.' ”/¢. ”)J (6)
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The repeated subscripts indicate summation in the subscript
range. The subscript "," represents differentiation °1j= 0 (when
i =3j) and 614= 1 (when i = j). @4, 6, and ¢ represents the ¢
values at (x-ax, y, z), (x, y-Ay, z) and (x, y, z-42z),
respectively.

III. Boundary Element Integration Equation
Equation (5) can be rewritten as:
K. .=(K.9 ), ,-¢ K, =0
i,7=1,2,3 (7

Using a finite element method, we divided the 02 region of the
flow field into M elements. If & is replaced by its
approximation é in each element, then the weighted residual
expression for equation (7) is:

2|

e=1 g. e=1

M
K.i%.0.,6d0-3[ §.K..Gia=0 (8)

e.

For simplicity, the superscript "~'" is omitted in the following.

G is a weighted function yet to be determined. We applied the Green
theorem to each element Q. in the first volume integral on the
left side of equation (8). If the interpolation function chosen
for ¢ has C1 continuity, i.e., ¢ and its first order derivative is
continuous across the boundary, then the boundary surface
integrals of neighboring elements will cancel out. After

applying Green theorem twice to the first integral on the left
side of equation (8), the surface integral is located on the
boundary S. Thus, equation (8) becomes: (with respect to wings,
including external surface and its rear vortex surface):

N

Z[L' GK.$.n,dS~ §"¢K,-,-G, n,dS ]+i§, 6K.C ,.d0+

= (9

L 4 o
+ 3. 46..K,..d9-3[ 4. K. .Gda=0
where Se is the area of the element e on the boundary S. If the

element f, is divided small enough, then Kij can be assumed to be

a constant in each element. In the nth iteration, its value {is
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equal to that in the middle of the element, Ki?'1), in the /3
(n-1)th iteration. Thus, Kij i = Kij j= 0 in each element. It
is a step function. 1Its derivative Kij i °or Kij 3 is a pulse

function. In order to satisfy the continuity requirement for

éi. across the boundary, we assumed that the variation of Ki'
is " linear in the vicinity o{ the boundary. Thus, the volume

integral in equation (9) is reduced to the following surface
integral along the boundary:

:\‘_‘,L 9G. K., d9= 25'4,@,  AK,.-dS,+ ﬁsqbc;_ AK,dS, +

= =1 e €=
» L
- +2§¢G, AK,.dS,
L o=t (10)
. N 7 B
r ZL¢ K. ,-Gd.Q=§§G¢, (AK,dS; + Z_“,Squ, AK ., dS, +
;
+ 3|68, 8K as,
P=123 (11

where P, Q, and R are the local coordinates for the element. dS
R dSQ and dSR represent the differential areas on the boundary
when P = const., Q = const., and R = const., respectively. J, K,
and L represent the total number of boundaries on the planes
where P = const., Q = const., and R = const., respectively.
Hence, equation (9) can be written as the following in the nth
iteration., &
3|

P

o
, GKu9, ,n,-ds-§ $K 111G, ,-n.dS] + Z; ¢K (=106, . dQ+

LB S. e=1t “

7 K
+ 28K 06, ~G. )+ ds, + (8K 46

=1 [

(12)

L

‘G¢,,)""’dSq+Z§AK§:"’(¢G, ,—G¢_,)"'”d$.=o
ir j‘l, 2., 3

If Ki' is a positive definite (which is always satisfied in
*
a subcritical flow), we obtain the fundamental solution G * to tpe
following equation as the weighted function G:
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Ki3m9 G =—and(z -3 D

(13)
When Kgg'1) is constant, the basic solution to this equation R
1gL2] wa
G (i.zn=IKPP L . (13 o
k .
where 6 is a pulse function. .
Rt=K'i(x,—x)(x;,—x,); §,j=1,2,3 (14)

k1 is the inverse matrix of Kij and |Kij| is the determinant of
the matrix ki1, §i and fi' represent the coordinate vectors of a
fixed point and a moving point, resectively. When a fixed point
and a moving point X; areoutside an element Q,, then X; # ii'.
The third integral in equation (12) is zero. When the fixed /4
point ii is inside an element ne, based on the characteristic of
a pulse function, the volume integral of the element is -4n¢(§i).

In the supercritical flow region, Kij is no longer positive
definite: however, Ki§n'1) in equation (13) must be positive .
definite. Therefore, the third term in equation (12) must be

rewritten if the neighboring upstream element is still

supercritical:
¥ _ . 3
g‘:s“'“”-”c“d% 25 SRIITVC. L dQ+H (15) R
where . ; |
H=NL‘¢(K$7"’—R§;-‘))Gmdn
(16)

Here, Kij represents the Kij value at the first subcritical
element upstream from the supercritical element. Ms is the total
number of supercritical elements. Because Ms is finite, the
workload to calculate the volume integral H is also finite.

Thus, the following boundary element integral for velocity
potential 4 can be obtained from equation (12): Lat
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G'Kit‘“é:(.E;)n,dS—Ss¢K57'”G.'.n'.d5]+3‘—1-1 (17)

where 7 £
B= ZSAK‘J" PG -G D 'dSp+ZSAK§7‘ PG -G, ) dS, -

¢w] LI

+23AK (PG, -GS, )"V dS, (18)

¢=1

AKij represents the difference between two neighboring Ki'
values. By respectively differentiating equation (17) with
respect to x, y and z, the corresponding boundary conditions are

q.n=0 (on wing surface)
aCp = 0 (on tail vortex surface) (19)
¢ =V, x (at infinity)
where aCp is the difference of pressure indices between the top
and bottom surface, and q is the full velocity.
In the transonic small perturbation field for a thin wing,

the boundary element integral equation (17) can be simplifiad as:

N
aG.(lol) a
dxp(x,y,2)= Ag<—F - sy g OQ
oo =2f] aegas| creevafpashs g,
IG* o aw (e=1)
+Z_;5 AK..(GJ 55— C ae) dS,+ H
Differentiating equation (20) with respect to x, we get
azGo(--l) aGt('-x) a
dxulx,y,2)= >, Ag dS—-| & _____A99
y _{S T oxal L' Frar3 ds}+ 21
9G* _ ~s Jp \*-V? oH
+Z} 2, aK. (9% -c )‘_" as,+ 91
Differentiating equation (20) with respect to y, we get
N
drv(x,y,2) = A aG'(.'_idg 3G""“ O
ZH T 5 T I R PPY

*2 L, (20 )T sy

where xp represents the x coordinate on the plane where P =
const, Differentiating equation (20) with respect to z, we get

Aton o
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(23)

+ _a_ /aG .a‘p (s=1) —_‘?i
§a§ AKA\P =6 ;)z-,, d5:7 5,

For a small perturbation flow field, we obtain the following from

equation (6):
Kiu=1-M:-[3-Q-»MIIMiu(x,y,2) + A[3~(2-»IM1i]x
Miu(x,y,2)— A3 — C—PIMIIMiu(x—Ax,y, 2)
K:z=Kss=1 (24) T3
K11=K13=K11=K13=Ku=K32=0 -
From equations (13)' and (14), we get B
G* V=1V (x=85+ KV Ty—mi+(2=£)%] !j
In equations (20) - (23): ' ;t
=
Aw(ﬁ,n,0)=¢(£,n,0 )—@,n,0.) } (26) v,
— oF ".;}
ac £ 0,0 = aC SEé 00— o &m0 ]
4
¢ is the small perturbation velocity potential. u, v and w are L
the small perturbation velocity components along x, y, and z, Q_j
respectively. +y is the specific heat (y = 1.4 for air). S'e is ﬁ}
the area of an element e on the z = 0 plane where the boundary 15
surface S is considered to be located in approximation. In order ;3
to limit the integration to the wing region Sw’ we substituted -4
equation (25) into (20). The first integral on the right side of T
equation (20) was integrated by part: S
-
o s
o Aus.5,0) x—¢ ]
dn¢.(x,y,2) = 4 b 1+ S e - —
o gﬂ g..w n>*z[ Vix— £)+K"‘“[w-nﬁ+rst ;j
Similarly ?i
j c a‘P - oG* ) P
- =11 A 99 46 « Op -3
‘.. }*Zj AKu(e% -6 dﬁ)e--, dS: +H (27)
X
7 °
S
e
------ e -‘“.'3:'T£57413{2552-9~*~"-"~“ e e T A
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ey we [(x=8)* +K"'“C(y mit 2
aG'(n-l) aw a dG
- 9 . dp\ TP
L,, ax GC d5}+§ax§s,AK”( ¢ dg)z-- dsSe T%i'{
. (28)
- 3 Au(é
4xv(x,y,2) = z_g uls,n,0) [ x—§
ZE{ 3yl G-+ N VGO TR D Lyt ] ]x
de—j aGt(---r j 6G . a (n~1)
, ds+§ S'AK“( X -6 E‘”)
OH
X g.°
dS:+ 3y . (29)

Ny

drw(x,gy2) = {( ”6“\5 _Auté,n,0)_
v 2.‘ Y725z )) s, i <

x[1+ -
Vix=5+ K1Y [ly—mi+2°] st -

R S a3

dH

x dS

When the fixed point (x, y, 2) is located on the wing
surface (z = 0+), the following can be derived from equations

(28) and (30):

AG* -1 a(p dS+D+E (31)

4xlu(x,y,0.) +ulx,y,0. )]——225 ox dc

LR
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N, .
dnlw(x,y,0,) +w(x,y,0.)]= li I M[
) (%,4,0.)] .l‘.”:z;; U= 1+

x4
TR TG T S HF+6 (32)
where
Dgziis AK (wa_G"_G.al>(--l)dS
tw) ax S, " a£ a; E-.’ F
]
= 9 0G* _~. Op\*-v? [ (33 /7
F 2§ oz sAKn(wa—; G _tf)g-.’ ds,

For a thin wing, the boundary conditions (19) can be simplified
as:

Ww = 39¢/8z = dz'/dx' -a (on wing surface)
ACp = 2 Au = 0 (on tail vortex surface) (34)
Vo = 0 ( ¥722 t=)

where z' is the vertical coordinate of the lower wing surface in
the body axis coordinate x', y', z' and a is the attack angle.
The first term on the right hand side of equation (31) is similar
to the linearized small perturbation thickness integral,;
therefore, the result of the linearized equation can be directly used.
Equation (32) can be considered as the expression for a
linearized small perturbation lift problem when the effective
washdown velocity at the control point is w(x,y,0+) + w(x,y,0-)/2
+ (F+G) /4. Therefore, once the values of F and G are
determined, it is possible to solve equation (32) by familiar
numerical methods for the linearized lift problem (such as

)[4] to obtain
the corresponding au(x, y, 0) distribution along the wing surface

nuclear function method and vortex lattice method
and the F and G values.

IV. Solution
We divided it along the wing surface into Nw quadrangular

elements. Moreover, planes (p = const.) perpendicular to the

p
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wing surface were made along the chord direction of the wing
element. These planes extend to a height approximately equal to
2 times the chord length. Many quadrangular elements were
divided along the plane, as shown in Figure 1. Figure 1 only
shows one of the P = const. planes and the partitioning of its
elements. In order to ensure that ¢ has C1 continuity across
the boundary on a P = const. plane, we expressed ¢ in an element
approximately as:

¢=LI¢J +Luy, + stl +L4¢; +Lu,+ Law, +L1¢.| +Lw,
+L'w3+Llo¢l+LUu‘+lew‘ (35)

where Li (i =1,2,----, 12) is the interpolation function. The
subscripts 1, 2, 3, 4 of v, w represent the values at
corresponding nodal points of the quadrangle, as shown in Figure

2. In the element coordinate QR shown in the figure, Li can be
expressed as[3]: =
Li=fi(Rf(Q), Li=g,(R g (Q
Li=fi(Qg.(R), Li=f,(QFf (R
Li=g,(Qf.(R), Li=f,(Qg.(R)
Li=f,(R)f.(Q), L,=g,(R)g,(Q)
| pmconsipm | Li=f:Q9:(R, Liu=f(Qf R
L~ ' L.=9,(Q f:(R), L.=f,(Q)g,(R) (36)
/8
[ 3
4
?,’: (~1,1) (1.1)::
wo It 3| w,
o Q
%, .
::. (=1,-1 u.-’u :’;'
o r
Figure 1 Figure 2

1. p = const. plane
2. wing surface
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The functions are

The variable 6 represents R or Q. The overall coordinate of a
point in an element can be expressed by the overall coordinates
of its four nodfl points:

Y= a-Ra-Qu+—a QU= R+ A+R A +Qy, +

+%(I~Q)(1+R)y‘ ‘

37)
z 1 A-Ra-Qz + i A=A U+Qz,+ : A+RA+Q2, +

++U+R A-Qz,
The value of u in each element on a P = const. plane can be
approximated by the u value at the center of the element. The
solution finding process is:

1. First, we assume the u(x, vy, 0+) values at the center of
each element on the wing surface, the values of v and w at the
nodal points of each element on P = const. planes, and the values
of u at the centers of elements. They are used as initial
values.

2. By substituting equation (35) into (33), the values of D,
E, F, and G are obtained from the given initial values after
transforming the integration variables to R and Q.

3. Using the vortex lattice method[4], the value of u(x, vy,
0) at the center of each element on the wing surface can be
obtained from equation (32) based on the boundary condition (34)
and calculated values of F and G.
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4., The calculated values of D and E, as well as the value of ,
u(x, y, 0-)= u(x, y, O+)-au, are substituted into equation (31). a
Furthermore, equation (31) is satisfied at the center of each
element on the wing surface so that u(x, y, 0 ) can be obtained
at the center of each element on the wing surface.

5. According to equations (27), (29) and (30), the values of
¢,V and w are calculated at each nodal point on P = const.
planes. The value of u at the center of each element on a P =
const. plane is calculated based on equation (28).

6. Steps 2, 3 and 4 are repeated until the difference of two
consecutive values of u(x, y, O+) at the center of each wing
surface element is less than the specified value.

In order to allow the solution to converge in the
supercritical region, the contribution from the supersonic point
(x, y, 0-) should equal zero.

[}

V. Examples

The examples shown in Figures 3-5 are identical to those in
reference [4]. The number of elements on the wing surface is
also equal to that in reference [4]. In the P = const. plane, it
was partitioned into five regions along the height according to
the law of tangent (from 0° - 63.4°). The partitioning in the
span direction is similar to that on the wing surface. From

bodeda'd  Blaraca ace:

these figures, the results in this work agree well with those in
references [4] and [5]. However, when there is an attack angle,
the front fringe result of this work is between those of

references [4] and [5]. Figure 6 shows the calculated pressure

bl

distributions along the :hord direction at three span positions
of a dull leading edge rectangular wing by using this method and

the difference method used in reference [{6]. One can see that

they are in good agreement.
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A BOUNDARY ELEMENT TECHNIQUE IN
TRANSONIC FLOW

Yang Zuosheng

(Nanjing Aercnautical Institute)

Abstract

The boundary element technique is now extended to study the nonlinear
transonic flow about three dimensional wings. A weighted residual formu-
lation, valid throughout a Mach number range including transomic, is
developed and applied directly both to the ponviscous full velocity poten=
tial equatior and transonic small perturbation equatios. In order to
ensure the irreversible character of shock wave and to make the solutions
stable and converged in supercritical region, an artificial viscosity term
is introduced. We partition the flow domain into 8 number of small
elements and apply the Green theorem to each element. The boundary
integral equations are obtained by using an interpolation function which
is C! continuous for velocity potential and finally solved by means of
finite element collocation method.
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L5 The Exploration of the Spatial Oscillations in Finite
i& Difference Solutions for Navier-Stokes Shocks

s

s

. Zhang Hanxin
{: (China Aerodynamic Research and Development Center)

WS ) O

Abstract
In this paper, the cause for the oscillations in the

upstream and downstream difference solutions was investigated.
The study showed that adding a second order diffusion term to the
Navier-Stokes equation could smooth out the shock wave. However,
the third order dispersion term and fourth order diffusion term

: could cause oscillations in the upstream and downstream solutions
'Qf under certain given conditions. If the second or third order
difference method is used to solve the NS shock wave equation,
the solution oscillates because of the dispersion and diffusion
terms.

I. Introduction
: When a difference method is used to solve a shock wave
§¥ motion, if the difference method is of the first order of
'J accuracy (or with an added second order diffusion term), the
o shock wave is smeared. If the difference method is of higher
o orders of accuracy such as second or third order,oscillations
?? frequently appear upstream and downstream[1][2]. In reality,
. there is no oscillation[3]. This oscillation still exists when
the computation stabilizes. It is significant to explain the
cause of this oscillation.

In this paper, an attempt was made to perform an

O enlightening analysis. We believe that because the step lengths

;i' of spatial lattice and time are not zero in the difference

if: equation, it is approximately correct to use the difference

;ff quotient to replace the derivative. Therefore, there is a finite
;’ difference between the difference equation and differential

f{ equation. For example, the model equation for the initial value

!
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problem is

Oou Ju _ _ J'u
CAM T (1.1

In the corresponding difference equation, when the difference is
expressed in a Taylor series the equivalent equation is:

Sreva 3 o (1.2)
This equation is called the correction formula for (1.1) where K
is the accuracy of the difference lattice and Vo is a coefficient
related to time and spatial steps. For compatible difference
lattices, when the time and spatial steps approach zero, Vo - 0.
Comparing (1.1) with (1.2), the difference between differential
and difference equation is:

o*u
Ve —
o 0x (1.3)
This difference not only affects the stability of the difference
equation but also causes the difference between the solution of

&, =

the difference equation and that of the differential equation.

According to this understanding, we used the small perturbation
method to analyze the shock wave flow upstream and downstream.

We studied the effect of the second, third, and fourth order /13
terms on the right hand side of the correction equation to
illustrate the correlation between the difference format and the
oscillation in the solution. Some meaningful conclusions were

also provided.

II. Effect of Second, Third, and Fourth Order Derivative
Terms in the NS Equation of Shock Wave Motion
1. Starting Equation
In order to simulate the effect of € in the correction
formula, let us study a one-dimensional normal shock wave motion
(see Figure 1). The basic equation set is:

......
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du |, p+1 :
pst— + T P u;a(l - L"L)?ﬁ= —a; [(1’ ""V;)i:_—]

27 v /ox O o)
2 2e)- 2 2] (2.1)
dx | ox® ox!| ‘ox |” "

Here, p = p_u_/u, p and u are the density and the velocity of the
gas, t is the time, x represents th coordinate (see Figure 1), ,
is the adiabatic index, v = (4/3)u. u is the viscosity of the
gas which is calculated according to:

“'—'“‘(\hi,)- (A)
where

=—1_ : ‘__2_1_ —_1; :
h 2 L<1Tv—1Mi) 2 " (B)
The subscript "= " represents the value at x -~ -« , M is the Mach
number and n is the exponent. In equation (2.1)

=r=1f, 2 1
“ ?*1(1+Y—1Mi)u‘ (C)
v; is the coefficient of the added derivative terms which is
assumed to be a constant. It should be pointed out that when v
's (i = 2,3---) are zero, equation (2.1) is an accurate NS
equation accurately describing the positive shock wave motion in

normal conditions[3]. Therefore, the steady state solution to

i

equation (2.1) is the correct shock wave. When vi's are not zero
and assume certain values related to the lattice step, equation
(2.1) simulated the correction formula with a specific difference
lattice. Hence, we can study the effect of second and third
order terms by solving equation (2.1).
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Figure 1., Velocity Distribution of One-dimensional Positive
Shock Wave

1. real viscous shock wave
2. higher order difference calculation
2. Effect of Second, Third and Fourth Order Terms
If the distribution of any physical quantity of a nonviscous
positive shock wave is used as the initial value, it has already
been proven that (2.1) has a steady state smooth shock wave
solution when v_=v_=v = ---0[3], Its shock wave zone is
very thin (assuming the center is x = 0). Outside the shock wave
region, the physical quantities rapidly approach the upstream and

uﬁ downstream values of a nonviscous shock wave. If v , v ,--- are

k& not zero, although (2.1) still approaches its nonviscous value ‘
:f: far away from the shock wave region yet some oscillation emerges -
;! near the shock wave (See Figure 1). In the following, the /14 1
- correlation between v % v and the oscillation is analyzed. iE
E; In reality, if we onfy consider the presence of Vor Vg and Va4 j}
& then (2.1) gives the following when the solution is stabilized: -3
o

oS o G R e BRG]
i: where i
. - -
5 2
C
t% 21 :
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L
-=_u.. g
{“ u. (2.3) )
m =Z:l( -2 1 .
ui= A\l Ty -
(2.4) -
Obviously u = 1 and u = ﬁz are the upstream and downstream values _;
of the nonviscous shock wave, respectively. !;
Let us study the nature of the solution to (2.2) near T = 1 s
and U = Gz . Because u = 1 when x~ -« and U = GZ when x-= , this -
investigation can provide the characteristics of the solution R
" upstream and downstream. QJ
Let i =1+ u' (upstream) (2.5) o
u =1, + u' (downstream) ;ﬁ
Assuming |u'|<<| in the upstream and |d|<<ﬁz in the downstream, ;j
equation (2.5) is substituted into (2.2). After omitting higher !i
order small terms beyond u'2, we get '
. ~ B
ou’ d%u’ o’ _ .l
I‘n?; 4] Sxt V‘E—x-,—kxu ) . )
w _ dw _ ow_ . UPSEEESD
“5x T ow T ox " (downstream) (2.6)
where
8=V +V,, U =0+,
k‘=?+l -
——2? P..u.(1 uz)>0
- 2.7 :
k1=y+1p u. L %1>0 ( ) N
2y 77w, ~

Vie and Vo, are the v values at U = 1 and GZ’ respectively.
Obviously, (2.6) is a linear equation whose solution can easily
be determined by the following characteristic equations:

vA' v At -uA+R =0

vkl ey A~ A —k, =0 (upstream)

(downstream) (2.8)
The discussion is carried out in the following cases:
1 My and up are greater than zero and vy = v, = 0. The
characteristic root of (2.8) is
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k.

= (upstream)
Y b
Ha (downstream) -
-
The general solution to (2.6) is: . /15 [1
b, =
u'=Aes,* (upstream) o
u'=Be-:—:" L
(downstream) fﬁ

= Or, one can get from (2.5) that

- &,
u=1+Ae:s;*

DO P S
.m:‘,‘-.,.

_ - 4, (upstream)
- ' U=u:t+Bemnt  (Jownstream) (2.9) 2
o (2.9) shows that the upstream solution smoothly approaches 1 L;
b exponentially when x~ -« . When x ~=» |, the downstream solution L
- snoothly approaches u, wihtout any oscillation. ip
- (2) >0, uy>0, v3> 0, and v, =0 =
5 From (2.8) in the upstream if :a
2 )
Hi -~
_.__>‘ _..1
ki, (2.10) ]
"3

then both characteristic roots are positive real numbers. The

general solution to (2.6) is: 11
§=1+A.exp[<—2vL’,+ zt \/pi—h,k.)x]+
(2.11) -_'.
b _ 1 s N
+Arexs| (Lo - gviT=om )+ -
Here, A1 and AZ are integration constants and the solution does L3
not oscillate. If o
ui x
I TS s
(2.12) Q;
both characteristic roots of (2.8) are complex numbers. )

Therefore, the general solution of (2.6) is:

23
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- 1 —
u =1+A,exp(-2i:-‘_x)cos (3’—\/410,12.—#: x )

. . 1 —_—
+asexp(fo s )sin (venk =i %)

3

(2.13)
Eﬁ; This equation shows that the solution exhibits oscillationsin the

upstream. Moreover, the amplitude gradually increases with
increasing x. Figure 2a shows this change.

In the downstream region, because all characteristic roots

gﬂi of (2.8) are real and U - ﬁz when x <= |, the solution to (2.6)
L?i is:

- - [ 1 o :
_ u=u:+Aexp{[7;-a’— (#,-.-Ak,v,) ]x} (2.14)
ff One can see that the solution does not oscillate.
Egl If we assume that Mqs Hg> 0, v3<0 and v, = 0. The solution

does not show oscillation upstream as one can see by the same
analysis. In the downstream. however, if

#3
kv, |

<4

the solution shows oscillationg(see Figure 2b). /16
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(3) v, >0, Vy = uq = My = 0
In the upstream region, the characteristic roots, given by
(2.8) are:

g \7
A= (3
- () (2.15)
L=Af $AL00
Y=Ago —ai

where

. (2.16)
T

Considering U - 1 when x - -=, the solution (2.6) is:

- (1)
u =1+A‘e‘z COS(A,‘“:) +Az¢"(”'sin(1.‘”x) (2.17)

Here, Aq and A, are integration constants. This solution
obviously oscillates. Furthermore, the amplitude increases with
increasing x (see Figure 3).
For the downstream region, the solution of (2.6) can be -
obtained similarly:

- _ 1), (1) .
i=u,+Be" Tcos(d! x)'+B.-e'(‘l"sin(A,”’x) (2.18)
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where {i-;“=17<£ d
(5) (2.19)

It shows that the solution also oscillates downstream. Moreover,

the amplitude increases with decreasing x (See Figure 3).

%) V4 V3. Hq and My simultaneously are present. /17
Assuming v,> 0, based on the determination formula of the

third order equation one can easily find out that if

vi+3u,9)°

<1
(v§+~%~u.v,v.+22—7 k! )’ (2.20)
then the solution of (2.6) oscillates .upstream. In the
downstream area, if
(v]+3u,9)°
<1
(v}+%u,v,'v.——2"-27—12,;&)2 §2.21)

then the solution of (2.6) also oscillates. From (2.20) and
(2.21) one can see that when vy> 0, A # 0 and By = Mg = 0, it
always oscillates upstream. In the downstream, however, only
when

k,v} 4
v§‘>27

it exhibits oscillation. If \£) <0, A # 0 and Mg = By = 0, there
arealways oscillationsdownstream. Upstream, however, only when

hx”: 4
FH 27

it exhibits oscillations (see Figure 4).
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III. Discussion on Upstream and Downstream Shock Wave
Oscillation in Difference Calculation

Based on the above analysis, one can see that:

1. In the viscous shock wave propagation equation, a smooth
solution can be obtained by adding Vo alone. The second order
diffusion term can smooth shock waves. If second and third order
terms are added, when Vi >0 and

a2l sl

ul
v. kg <4

the upstream shock wave solution shows oscillations and the
downstream solution is smooth. If v3(0 and /18

RS WO IR

—

B
v, & <4

the downstream solution exhibits oscillations and the upstream
solution is smooth. If the fourth order term is added, its
effect is to simultaneously cause or aggrevate oscillations in

AV o P

2
hAPUTS

the upstream and downstream.

2. Because the second order lattice has a third order
dispersion term and a fourth order diffusion term and vy = 0, the
upstream and downstream shock wave exhibits oscillations when v =
0 or very small., If the effect of the fourth order diffusion
term is far less than that of the third order dispersion term,
then one side of the shock wave exhibits larger oscillations
depending on the sign of the dispersion term. In order to
minimize oscillations, we should try to reduce the third and
fourth order terms. For the explicit MacCormack form, if the
Courant number approaches 1 and \£) and v, are small, the
oscillation should be small. It has already been proven in the
numerical experiment in reference [1].

3. The fourth order diffusion term appears because Vg = V3
= 0 in the third order lattice. Therefore, it is unavoidable to
have oscillations in the upstream and downstream shock wave when

v = 0 or is very small. However, it is generally smaller than
the second order oscillation. To further minimize oscillations,
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we should reduce one fourth order diffusion term. It is expected
that the fourth order lattice only has negligible oscillations in
the upstream and downstream because V) = V3 =V, = 0. The effect
of higher order dispersion and diffusion terms is very small.

4. 1In order to verify the accuracy of these conclusions, we
gathered some numerical shock wave experiments in the literature
based on the following Burgers equation:

Jdu du _ , du
W"‘(U‘FG)E— v 0;2-

Figure 5 is the calculated result given in reference [4] using
the first order difference lattice. When a = 0,038925, v = v :nd
X = -, u=2,593467. When x = *, u = 1,393784,. One can see
that the shock wave curve is smooth. Figure 6 shows the
calculated results given in reference [5] using the explicit
MacCormack second order lattice. When a =0, v = 10'7 and x = -=
, =<1, When x = ® u =1, One can see that oscillation
occurs both upstream and downstream. Figure 7 shows the results
given in reference [4] using the third order lattice. The
conditions are identical to those in Figure 5. One finds that
there are oscillations on either end of the shock wave. However,
it is much smaller than that using the second order lattice.
Figure 8 shows the results given in reference [6] using the
fourth order lattice. When a = -(1/2) and x = =», u = 1., When x
= o u =0, The lattice Reynolds' number is 2.5. One can see
that there is almost no oscillation in the shock wave.
Correspondingly, if the second order lattice is used, oscillations
will appear (see [6]).
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Figure 5. Burgers Equation Shock Wave Solution Given by
First Order Difference Lattice[4]
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Figure 6. Burgers Equation Shock Wave Solution Given by
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Similar conclusions are derived by numerical simulation of the ]
Euler equation solution of the shock wave[1’2]. '
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Figure 7. Burgers Equation Shock Wave Solution Given by
Third Order Latticel4]
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Figure 8. Burgers Equation Shock Wave Solution Given by
Fourth Order Latticel[6]

Results of numerical simulation completely confirmed the
accuracy of the conclusions. Therefore, the cause of oscillations
in upstream and downstream shock wave solutions using a
difference method is explained.

During the course of writing this paper, the author
discussed with Comrade Gao Shuchun many times. IHe wishes to
express gratitude for his assistance.
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THE EXPLORATION OF THE SPATIAL OSCILLATIONS
IN FINITE DIFFERENCE SOLUTIONS FOR
NAVIER-STOKES SHOCKS

Zhang Hanxin

(China Aerodyngmic Research amd Development Centre)

In this paper, the spatial oscillations in finite difference solutions
for Navier-Stokes shocks are explored. It is shown that the second order
diffusion term added to NS equations could smear the shock wave, damp
the oscillations in the vicinity of the shock. However, the third order
dispersion term and fourth order diffusion term added to NS equations could
cause the oscillations in upstream and downstream region of the shock
under the conditions given by this paper. Therefore the oscillations in the
difference solutions with second or third order accuracy could arise from
the numerical dispersion and diffusion terms.
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Calculation of Boundary Layer Growth Behind An Unsteady
Expansion Wave in a Tube
Wang Songgao
(Institute of Mechanics, Chinese Academy of Sciences)

I. Introduction

In order to improve the operating quality of wind tunnels
and shock wave tubes, the study of boundary layer growth after an
expansion wave enters a cylindrical tube is of significance.
Especially in transonic wind tunnels, the boundary layer growth
in the gas storage tube with time will directly affect the
operating time and flow quality of the tunnel. To solve this
problem is the basis of wind tunnel design.

E. Becker[1] first calculated the boundary layer growth in
the gas storage tube. He used the two element incompressibility
assumption and the 1/7th power velocity distribution to simplify
the boundary layer momentum integral. Then, the solution was
found by using the Blasius skin friction law. Furthermore, an
effective central expansion wave velocity was obtained. Although
the effect of compressibility and heat transfer on p/pc was
considered in the boundary layer and the skin friction
coefficient, the result is still incompressible. H. Ludwieg [2]
modified the Becker method for the velocity cross-section and
skin friction coefficient to obtain better results.

J.C. Sivells' work[3] pointed out that corrections must be
made in axisymmetry, skin friction coefficient, velocity cross-
section and effective expansion wave origin. Becker's effective
expansion wave propagation speed could still be used. In his
calculation, two modifications were made: one is to modify the
result of a flat plate and the other is to correct the origin of
the effective expansion wave according to the start-up time of
the experiment. A numerical method was used in the calculation.

We began directly from the unsteady axisymmetric boundary
layer momentum integral to find the boundary layer growth in and
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behind the expansion wave assuming that the steady state boundary
layer velocity crss-section and skin friction could be applied to
an unsteady boundary layer, and the axial pressure gradient of

the nuclear flow in the tube is negligible. Finally, the formulas
to calculate the effective expansion wave propagation speed and
boundary layer thickness were found. These formulas are in
algebraic expressions. In the binary incompressible case,
Becker's results are obtained. The computation process is

simple. It is in good agreement with the experimental result.

PANNY WL J I DR AL 3

o 1
-1
For engineering design, modification of the origin of the )
effective expansion wave can be skipped. g
<
II. Basic Equation and Its Solution R
The unsteady boundary layer momentum integral for a tube is: -
5 /21 ]
90,1 du 1 9 _ 1 dr, ) 2
ax+u. ox (29+6.)+0(p. ox v, d:: )+ (0 1
1 9 19 ]
+‘Tu= 7 (pcuca')_ma_’ (p.d,) =';— Cy ".
where o<('(1_ Y\ pu u A
J (=) e (1) aw g
4
= __y_ . pbu .:
o= (1) (1- 2 Yay ]
{°(,_v o (2) g
b=, (1=35) (1= 2) 4y ]
]
Here, p, u and ry are the density, flow velocity and inner radius T
of the tube. The subscript e represents the free flow direction :
of the boundary layer. Cg is the skin friction coefficient. x "
is the axial coordinate and its positive direction coincides with )
the propagation direction of the expansion wave. y is the radial R
coordinate which points from the wall toward the center. t is
time.
§
.
_ 34 1
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From

1 Ou. .4 Qdu, _O* /  Ou Ju,
wox Ot u," ot w \* e T a:)
é* dp_

Pell 0x

Equation (1) can be converted into:

06 ., 6 ou . 8 9p. 1 1
ox zu, ox ' p. O0x +p.u, at (0.0* = p.é,)—?c, (3)

WS SR LIS R

Substituting the power law velocity distribution into equation
(2), we get

2 [1— n T.]_¢8 _1 \

a=d=8, w2 ZntD T, ] . 2(2n~1)(1 2 17T.)
[/ n [T +(1 . n+l]
D mFD LT T.) n+3

'(1';t>[?éi":.2u:+1J

e ETs — 0 1) 2]

When n - «», the above formula approaches 1. When n = 7~11, the
change caused by (Te/Tw) = 0.8~1.0 and (olro) = 0~1 is around
4%. The entire change is approximately 8%. Because we assumed

that Ao is a constant, equation (3) can be rewritten as:

(4
98 2 du. 1 9p. A 9
ax +0( u, ax +p. W)-"p: U, at (p' 0) g ¢t
Let ¢ =Py
Patie
(5

The subscript 4 represents the gas storage state. Equation (4)
is converted into

6¢ ¢ ou, . 0 _ ¢ ou \_ 1 p.u,
dx u, Ox + (at u, ot )—_2_ —/:;.—!J—.-c' (6)

Equation (6) is the basic equation of this discussion.

Generally, an unsteady expansion wave is a wave series of /122
finite thickness. The boundary layer growth in the wave and
behind the wave should be separately discussed. The two
solutions are linked together at the tail of the wave. Figure 1
illustrates this situation. In the following, we will discuss
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in two separate situations and then combine them together.

Figure 1. Schematic Diagram of Boundary Layer Growth

1. composite solution
2. connecting point

(1) Central Wave

When the thickness of an unsteady expansion wave is zero,
the nuclear flow parameters Pe and u, in the tube behind the wave
are invariant. Equation (6) can be simplified as:

(7

e n e e a8 TR B el CEEERE t aTAT ALK A N A B W Nt

)
|
v
[

¥ According to the theory of partial differential equation, we can i
Eﬂ obtain the characteristic equations for equation (7): )
b - r
p.~"- dx ;
i _— =
F’ dS r
o dt A ;
< Qv )
\ - v ds u, d
= d6_1 . (8) :
[ s 2 1
e

Here, V represents the propagating speed of a central expansion

J I NI |

wave. From the above formula, we can obtain an equivalent
differential equation for equation (7):

r,,,r,-,,drr(r,,n
L ] L

f e
c e .
e
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_V &-38,\do _1 )

(1 #7%) -1 (9 .

where ‘

X=x-p¢

RN NN

After ascertaining ce = cf(e), equation (9) can be solved.
(2) 1Inside the Wave

I

Let

§=x
—y_ X
=t a—.t} (10)

TR ol DRRRTN

Here, a is the speed of sound. The subscript 4 represents the

gas storage state. We get

3‘;=6_£"T§3}
a3
;73,- ~F o «(11

When y = 1.4, the correlation between parameters inside an

unsteady expansion wave and those in front of the wave 15[1]:
= } (12)
L _(1_1,Y
pe=(1-41)
9 (u,
We have 3{(%&)’0 }
O (u \o_5
“: The viscosity was approximated by the Sutherland formula[1]: /23
. He
- -——=1-0,28p
3 “ (14)
% Using the above formulas, equation (6) can be written as:
s
[ |
- ~
. =
o .'~]
s 37 5
]
]
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n 5 o &n 5 1
=5 1 ;
-ﬁw@.?ﬂ)m (15)
Because Re, = p u 6 =46 p,a, by = f(é,n), and cg = ce (4,n) in
Be LA He '
equation (15), the characteristic equation set for equation (15)
is
dé _
ds - 1
dn_1-np/ . 6A 1—
72"'?"(1**5—‘,,") (16)
dé  1-n 4(,_6A 1-n)\_ 5 1.\
ds T hy 6(1 5 T)’ﬁ"(l'T”) s

From the two equations above, we get

daf _ -—r)dr) 11 _ 1 dn
T S M L= A T
The solution is T§?=¢:[1—<1-E5A.)r,]_‘s“_-l 17

The constant ¢ can be determined later.
From d¢/ds = dé/dy dn/ds and equation (17), the equivalent
normal differential equation for equation (15) is:

("% )[‘ (""’) ]_Zq‘" (18)

After c; is determined, ¢=6(n), i.e., 8 =6(n), can be determined.
(3) Composite Solution
Strictly speaking, the boundary layer growth process should

5

_¢i"(‘+€5” _25

dn 0 -(_i) 72 €
1 XGAU

be solved inside and outside the wave as shown in Figure 1. The

complete solution is obtained by combining the two solutions at
the end of the wave. Obviously, solving equation (18) is most of
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the work. We can assume a composite solution: to find an
equivalent expansion wave of zero thickness which results in the
same boundary layer thickness at the tail end of the wave at the
same time as that in equation (18). We used such a zero

PEPIV RN T WA SRR SRS | P

thickness expansion wave to find a universal solution. In fact,

La

it is a problem to find the propagating speed V of an equivalent
central wave,
Assuming that the friction coefficient law is normal: /24 ;

cr=k(Rey) ™" (19) .
k is a constant and the subscript 6 represents taking Re with ]
respect to . :

Substituting it into equation (9), we get the solution 3
k Vi—-x

—f"t=——(1+m) — ~

N OOy :

) ‘ (20) >

. 5

1 [(pa """ s -n___k_ -—GT- y

1+m\ u,) ;:o.u.os T e a.¢ I-LA :

!

By substituting the unsteady expansion wave correlation into it,

we get: -
3

1 (08) guein 5 poii(1-1Y - N i

1+m( He ) A TR (l T) 1=0.28m (—'E‘V—) (21) K

n+— —A R

5 ' v.i

N

y + 1 M :;

At the tail n = n4 = 2 3 , generally, M3< 0.30 which -

1+ lil M R

3 5

means n, <0.34. ny is a small quantity. After keeping the ]
lowest order term on the right side of equation (21), we get: ]
| 1- ¥ Z

1 P8 \® 1 ooy 25 -_. : ’

1+m (T) ¢ =g had V: (K (22) ;j?

a, ‘)

‘]

The subscript 1 represents the wave tail. 5
-1
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Corresponding to equation (18), we get

dé=*i gort 1-—(1+6%)n
dn a+m) 7 1‘(1-6%)”

l——— 2
7z (1+m) ck (1—0,28n)" ( 6 ) i

(BB

The solution is

1= (lo_)q
1 mbL_ 25 ‘e ,“%
I+m ( ™ ) ¢ chet )L ( -_). x
1-(107’-)n
"a-0.28m°(1-¢)'w’ T /25
X 3 2= 37ed> e- e ‘4 dn
 [-(-55)r] 23)

At the tail of the wave:

1 wey 25 1em _ me
i+—( “‘)nt ck[n (1+m)-An, ]
(24
5 (1-0.28mn) (1-%0) [ﬂ"""’+(l+m) - ]dr) )
n}
72 23 ck 2-m
1-5/6a
From §/1-n = a,t, we can specify that ¢ = a4; [1-(1-5/6 ) 4] .

Substituting it into the above equation and keeping the lowest
order term in nq, We get:

1 P3, -01325 "l
1+m( .)¢ 72 R (25)

Combaring (22)to (25) we get:
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i.e., v N

— __ﬂ‘_g - V '.‘.‘

PN Pt (26) .

-;' V 6.—6 ” -1 ‘,,"

- —_—— 1+ ] 1 :'_,

t_'— or a. ( 0 2""1) ;‘

- Lgl__é"dg T

- a, é 2~m :

h (27) —

® When the flow is binary and incompressible and n = 7, m = 1/4, & f

ﬁ = n+2/n = 9/7. s

v %\ 2

h = lgn) e (28) 1

This is Becker's result[3]. Strictly speaking, the propagating f&

speed V of the axisymmetric effective central expansion wave is .?

also related to the velocity cross-section and the law of skin &

ii friction in first order approximation. E:

a S

- A

- III. Results and Discussion :
ﬁ; For convenience, we take the absolute value of ug- Then,

equation (9) can be rewritten as:

V é-4 0 1
14— -
(+ - 5F%)f=Le 20
where
X=Vit-x (30)
YV oy 1 8=48, w+DM,
PR 'z+(y—1)M, (31
Vel yv=1_ y+1 &-3,
& w MY Tigem e - (32
Fv As long as ce is determined, the solution can be found. /26
= We noticed that the value of 1/2-m varies by about 3% when m
:} = 1/4~1/7. We also assumed that 6*-6p /e is a constant
- *
- (although the not too large variation of & -6_/6 is included in
:f the calculation), equation (26) or (27) may be considered
% invariant in approximation. Therefore, the assumption that
q 41
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(33)

is not related to the specific laws of velocity cross-section and
skin friction in reference [3] is still valid (approximately) in
axisymmetric conditions. In the normal range, the difference in
the values of (31) and (33) is less than 10%.

Equations (29) to (32) are our starting equations. For
simplicity, equations (31) and (32) can be approximated by the
corresponding Becker's result.

Let us take the Karman modified friction coefficient
expression

(0.242)? y—1 “heser
€r= (g Re, +1.1696) (IgRe, +0.3010) (1+ 2 M:) (34)

and substitute it into equation (29) to obtain the boundary layer
thickness by integration:

93 p’f - hd 21 1)
V( 3* ’:,), Elg(ZRe.)]"(H”—z—‘Mg) e

o (35)
Subsequently, the expressions for e/s, 6*/6 and 6p/6 are found.
After reorganization, the above formula can be written as:

0.0
3= £_+
3

=8(3 - 4(3\
c-8(L)-4(L) (36)
where
- i 2 TN,V 1 T,
A= GrD D (“’zu+1 T.)+u. T GTD (”'T .)
- - 2_T.\, V¥ __ =» 2 T,
B=rmors (e 1)t o GEDeTD (M ++ ) (37)
C= 0.0293(V't — x)

rd{lg(2Rey) ! (1 +_~,1;_1 M )ai..,

- JIf Te/Tw = 1, the above formula can be further simplified.

Obviously, the computation is simple.
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Figures 2 and 3 are the calculated results.
Figure 2 is a comparison of the calculated results with

experimental values in wind tunnels,

b el s Sl ML Al Sl Rl sl A S

They agree very well.

Results calculated by Ludwieg are also shown in the figure.

Figure 2.

0.7 /
T Y
v /7

¢ J%)/ o Mi20.2 Res =5.1x 10"
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Comparison and Calculated Results
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Figure 3 is the comparison of our calculated results wth the
experimental wind tunnel values at Arnold Engineering Development
Center (AEDC). The calculated results deviate from the
experimental values by a certain moment. In the figure, the

modified result in reference [3] is also given. Sivells used the

Numerically, this correction value would not bring about a large

start-up time of the experiment to modify the effective origin. .
This is to add another time correction. When the starting device o
is located downstream from the wind tunnel, this correction could ti
improve the agreement with experimental values. However, this fg
correction could not be obtained ahead of time in engineering. if

error for design purposes. It could be neglected. Of course, it
is ideal to determine this correction in theory.

In summary, it is possible to theoretically calculate the
boundary layer growth behind an unsteady expansion wave in a
cylindrical tube by using the composite solution of an effective
central wave propagating at a speed V directly from the unsteady
axisymmetric boundary layer momentum integral with some
assumptions. The effective velocity V has been found. Within a
certain error range, it is not related to the velocity cross-
section and the law of skin friction. Becker's result is a
special case obtained in a binary incompressible system when n =
(1/7) and m = (1/4). The composite solution is an algebraic
expression which is easy to calculate. The results are in good
agreement with the experiments. For engineering design purposes,
the accuracy is sufficient.
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CALCULATION OF THE BOUNDARY LAYER GROWTH :
BEHIND AN UNSTEADY EXPANSION ‘4

WAVE IN A TUBE .“

1

Waag Songgao
(Institute of Mechanics, Academia Sinica)

vy e

Abstract

The problem of the boundary layer growth in the charge tube is dis-

R B D W )

cussed. Based on E. Becker’s work and J. C. Sivells’ modification, in the
axisymmetric case, a theoretical treatment of the boundary layer growth
in the expansion wave is given; the movement velocity of the equivalaat y

unsteady expansion wave of zero width is derived; an analytical solution

i$ obtained and has been reduced to an algebraical expression.] The result
contains various factors which affect boundary layer growth; axisymmetry,
velocity profile, skin-friction coefficient law and expansion wave thickness
effect. The calculation is simple and the results coincide.with experi-

ments.
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Numerical Computation for Inviscid Supersonic Flow
Around a Bent Cone
Ji Chuqun
(Beijing Institute of Aerodynamics)

Abstract
In this work, a computation method for inviscid supersonic
flow around a bent cone was developed using a difference method.
In order to overcome the difficulty brought about by the bent
body axis in the calculation, the equation solving place is
transformed into an inclined plane in the advancing direction
through the Euler transformation of the independent variables.

In other words, an "inclined shift" or "parallel shift' of the
Euler equation was used to solve the problem. Numerical examples
showed that good results could be obtained using this method.

I. Introduction
This numerical method for the characteristics of an inviscid

o supersonic flow around a bent cone was based on a difference

;ff method and the shock wave capturing technique with the following
!!l essential points. (1) In order to overcome the difficulty due to
the bent cone axis, the independent variables of the Euler
equation are transformed onto an inclined solving plane which is
the same direction as the thrust. Moreover, the angle of
inclination gradually increases or decreases as the computation

progresses. In other words, the numerical solution of the Euler
equation is found by the "inclined advance" with a varying angle
of inclination or '"parallel advance'" using right inclined angle.

o Its advantage is that the calculation can advance in a rational
direction according to the specific shape of the object to
simplify the calculation and to ensure the accuracy. (2) The
second order two-step MacCormack scheme is used. (3) The
computation area is divided into two parts by a transformation
plane (see Figure 1). The part in front of the plane uses the
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front cone cylindrical cocrdinate to solve the Euler equation by
"inclined advance'. The part behind the plane uses the rear cone o
cylindrical coordinate to solve the Euler equation by ''parallel
advance'. (4) The computation formulas for the external shock
wave and the boundary are derived from the shock wave ccrrelation
and the boundary compatibility relations, respectively. -(5) The

flow characteristics of singular points on the intersect of the :
front and rear cone surface are solved individually. The S
position of internal shock wave is derived from the pressure jﬂ

charge in the flow field. No filtering and smoothing process is
included in the calculation. (6) A non-uniform radial lattice is
used so that the number of meshes is increased near the surface
without increasing the total number of meshes.

II. Basic Equations and Boundary Conditions
The coordinate system, attack anglee. and sideslip angle 8
used in the computation are defined in Figure 1. Different
equations were used in the "inclined advance'" and ''parallel

advance'" areas for solving the Euler equation. In the latter o
case, the conserved Euler equation is used. The specific fﬁb

computation method is shown in reference [2]. In the following, :§i
the equation in the "inclined advance'" region and its boundary ;iJ
conditions are given. ﬁ{T
1. Points in the Flow Field e
In a cylindrical coordinate (z, r, ¢), the aerodynamic N
equation for a steady inviscid and thermally non-conductive flow —
is: 1
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Jdu Ju , W Jdu , 1 dp _

"az*"ar*‘r'W““T 2z =0

du v, W v, 1 dp w

Yt it st =0

dw. dw W Jdw 1 dp , vw

“d.’ v F_dtﬁ+ 7 =0 1

ap poP L W Op _ ap dp , w 0J
Ut T "(“ Tt p)=°

The pressure p, density o, speed of sound a, and velocity
components u, v, w are dimensionless. The dimension factors are
pQ,VE ,p, and V_. 1In order to change the solving plane of
equation (1) from z = const to an inclined plane n(z, r, ¢) =
const (with respect to z-axis), new variables n, £, and ¢ are
introduced in the following equation.

z=E(r,n, %) =n+r(A+Bn)cosyp

r=f.(n,9) +E&Cf.(n, ) = f1(n,¥)]
b—p (2)

where

A=ctgl,~ T _(ctgh*—ctgh
88— s (cte ctgd,)

1
B=— (ctghf* —ctgd,)
ol LU

where no and Ly the initial values of g a:d angle of inclination
of the front cone flow field solution, and e represent the n
value and angle of inclination of the transformation plane (see
Figure 1). f1(n,¢) and fz(n,w) represent the external shock
wave boundary and object boundary [r=f1(n,¢), r=f2(n,¢)],
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respectively.
By using the transformation correlation (2), equation (1)

finally becomes 7

5

1

op _ pa‘[G,q.+G.n.+G(% )] e(a’G,+G>) o

2 1 3 2 F;

dn a [fl. +nt + (T ’Id) ]_e .

—(Go—e. 20 (3) -

% _ (G, e bn) ]

on g'e .

du _ 1 _ 1 _9dp 5

(e 5 gh) ;

dv _ 1 _ 1 9p f

=G~ $n ) ]

(G- gen ) , :

where /21 j

-~ [nd0 ,® 3 Qu v 1, dw .

G, = ["g*ra¢+p(5'a5+5'a;+r5‘ae+ R

1 Jw v 1

] ¥

ou W du_ 1, dp g

Cr==nar o s o ;

=g OV _W Ov_ 1, 8p w :
G, n JF o av £, s +

e Ch o —) 2

R A

:
’
ﬁ
3

4 n=73-P=fiut fvt—Ew
e 3
- - an - l .
Ef' "=3: TE, |
- 9n _ _ E, 1
FJ " a' - Ew -:t
r . —
o -

[ -
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=(A+Bn)cos ¢

1p _1 0Emne __ 1 i
. E, ; pn =-- (A+Bmsiny

Equation (3) is the formula to calculate a point in the

ST VIDUY WS S S L

"inclined advance" solving region. When the solving plane
advances from n, to n*, its angle of inclination with the z-axis
also gradually changes from 6, to e%*,

2. Shock Wave and Characteristic Compatibility

PP SILN WY T U W L.

According to an analysis of the shock wave boundary
characte-istics, the only characteristic compatibility in
calculating the shock wave point is the Porter I family

Ak B .l

compatibility relation.

N e |
1 du Jv 1 Jw e) (4) /3 ;
where  or S |-ee(n G v Sr g Sr)- e S = F
F= -—pa(N.G,+N,G,+’V Go+a'G.+G, 3
N, .
NGt M A

V=¢m

Ve=un,+un,+wn,

nrl -m,
1

n = — e l

" V1i+mi+m?

", -m,

where Ngqs Ngoo and n 5 are the unit normal vector of the shock
wave plane,
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In addition, the shock wave point solution should also
satisfy the Ranke-Hugoniot relation:

p=?f-l * (vizl)' (z+1)(L -S”
p= — P piVi,
(5)
(1 p—p‘) n. V.
o=(1-8) .
a(1-2) n
where
S =p.+pVi;

L =;21y‘1 POV, +piV e,

P> Py Uqs V9, and w4 are quantities in front of the wave.

In order to facilitate obtaining the numerical solution, the
Ranke-Hugoniot was differentiated with respect tc n. It was then
used simultaneously with the characteristic compatibility
relation to derive the differential equation for the shock wave
slope m,

dml = —F-L-l
afl Lll (6)

where
Loj=pa [(eK.+ Lok, W, +(eKs+ L n K, )Vo+ (K. + Lk N, -
—a’p(n.K.+n,K. +% e K-)-GK- ]

L.,=pa [(e!. +-% n,I,)N, +<e1.+lp n.],)N;+(eK. +%n.1,)N,

—a’p(n.l.+n,l +—f7. )—d]
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All the derivatives of flow parameters with respect to m and m,
can be obtained from the Ranke-Hugoniot relation.

Equations (5) and (6) are the equations to solve the shock
wave point.

3. Surface Boundary Conditions and Characteristic
Compatibility Relations

From an analysis of the surface boundary characteristics we
know that there are four compatibility relations in calculating a
surface point: three flow characteristic compatibility relations
and the Porter II series compatibility relation. They are
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du ov Jw 1
e(ul v Y oW\, 1 ' w )
( an on w n ) P (un.+tn. +7n.> on =E,
Jou dv dw 1 A
e(t, %4, OV Ly 0w\ 10 1y t,  39p _
( aﬂ ? aﬂ on )+ p(t-nx+f. ﬂr+—r'ﬂ¢)—an——E; :
¢i‘t’—--¢z‘e-é£=f_‘3 (7) :
a7 dn ]
- ou , 1 _ 9p \a dc
pa[ € ——+—npn,—— ’\;+(e—" 1,92, Ow
( o p " on )‘ ) + o on )N’+<ed_n+
<+ 1 ap) . ou dv
_'l N 2 el B L aw a
pr e an 3+ap(,7: dr] +ﬂran+ r Ne 'W>+e—5%-=E.

where

E,=G,u+G;U+G;w ’ E;=63t1+63'1+64t;
E.=G., E.=-pa(N|G.+N:G,+N .G, +aG,+G,

t ‘um,— wn,
t. =_-l— wn;, — un
N V 1 3
i un,—uvn,
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N; 4 n,

N P | 1 4

N, m[vl+‘/1+m[n, , (M T)

N; w

ng, Ny, and ny are the unit normal vectors of the surface.

In addition, a surface point should also satisfy the
following boundary condition:

w
3n an an (8
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The differential equation for a surface point can be
derived from equations (7) and (8):

1
ags —(I.+J,)e+a‘p(n,fl+n. -’z+7 ﬂ.f»)

where

14

J1=Hl V

+H,t,+Hn,

J,= Hl% +H.t,+H;n,

J‘-pa l—ﬂl? (H) +"1G;+n161 +n;G|) —G’G. » J;- -Gg

1
V

H,- - (Gl‘n +Gl‘3 +GJ:) »

H: = - (Gz“ +G,U+G‘W)

H’-—G‘

.................................. [ S T L]
-----
.

........

R N PR
. o . T .o, R N S ) T T SR AR L DU Y
: ).'.P;“'A'J WP )‘.A"n'_h".-__.'-'\Lhkfhgﬁ_'nsu b TR WL PSS I WO

(9)

(4 2 T

oW T
AR S e

e e o
-"A,' 'L ..' ‘v e
TN .J

ALY

'

L A

A

B it e s
. l: N
, Sy
M Y )

»

S e e P e

,..
Y
1.

':-';f;);_; ‘.- -

"3

"

I"

X1

T
ry

‘5

- r v 0
PR AR
PR ’

v vt

Sl

YN

L
{ry

[}

‘l' "P k:l ll "I “ '.
' , 04

S
i Y

Yyl




B S "B ol S e S A e b S S e e i M P S et S A A CA RS b A Bt R e et T

/35

- eu - -
" Wl:%"‘ftl ’ W!‘%"'t‘:o "’:g—veT"' Tt

7 =t,q,+t,r],+t,(+ e )

III. Numerical Computation
The computation of a supersonic inviscid flow is
mathematically a problem to solve the initial boundary value of a
five variable quasi-linear hypobolic equation series. After the

K IO
@
[T W

solution on the given initial plane is obtained, the computation
can advance. Specifically for a bent cone, this method involves:
(1) using equation (3) and its corresponding boundary equations
(6) and (9) to find a discrete solution in the "inclined advance'
; solving region by transforming the initial plane p, to another

Ef plane (which is perpendicular to the body axis of the rear cone).
Of course, the initial plane and the solving plane must be
spatially directed. (2) The flow parameters and shock wave shape
g parameters are converted from the (z1, Tys ¢1) coordinate and the (z
A » Ty ¢2) coordinate (see Figure 1). (3) The transformed plane
is used as the initial plane to find the solution at the object
end by '"parallel advance'. The specific method is shown in

ST G P TRNE SN W LA WL LAY W NP

reference [2]. (4) In the "advance'" calculation, we will
encounter some points on the ridge of the surface. The flow may
expand or contract at these points. Therefore, it is necessary

to solve these singular points individually.
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Figure 1. Definition of Attack Angle and Sideslip Angle

1. initial value plane ng
2. transformation plane n'
3. shock wave plane

1. Calculation of Points in the Flow Field

f is used to express a column vector whose components are p,
p,u, v, and w. For equation (3), the pre-estimation step and the
modification step of the MacCormack scheme can be written as

aa o g o

kbt

(10)
7:::=—;—[7:..+7f"+(31):',_-An] (1)

The values of af/a€ and 3f/o9 , which are derivatives of flow )
parameters with respect to £ and ¢ included in the function of
af/an, were approached by the forward (pre-estimate) and backward o
(modification) derivation difference. When the radial mesh
spacing AE and circumferential mesh spacing A¢ are ascertained,

wr 1
;ﬁ the integration step An is determined by the stability condition. ;
j?ﬁ 2. Calculation of Shock Wave Points ]
.if The differential equation (6) was solved by discretization 1
Eﬁz using the MacCormack scheme. The pre-estimate and modification )
S A
= i
;" 56 1
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steps are:

lol_ L] aml . '\.‘
(m):’=(m);, ,+( 61)) An (12) :::'f
J
=L leme, eZ 4 (Om)e T, =
mist = emot s+ i+ ()T s (a3 i"ﬁ
A ]
The pre-estimate and mcdification steps for the shock wave /36 N
position f, are: jﬁ
8 fO15 = (for, ,~+(m,)'- i+An (14)
i sy 1 . LK IR
[ (fl)i.i‘—z‘“{(fl)i.i"'(fx)j 1t [(ml)f i+ (my) ] Ar]}
| (15)

The values of am1/ao in the right function of am1/an can be
approached by the central difference of the my values at various
¢. The values of 3f/3f for various derivatives of flow

parameters with respect to ¢ are approached by the same method as

that for internal points. The values of 3f/8f are approached by
a two point backward difference method in the pre-estimation
step. In the modification step, they are approached by a three
point derivation difference method.

The simple process of shock wave point computer is described
as follows. The shock wave slope m, was determined by the
difference scheme (12) or (13). The shock wave position f1 was
obtained from the difference scheme (14) or (15). fi¢ was
determined by the central difference of the f1 value on each
meridian plane. Then, the circumferential slope of the shock
wave fi¢ and m, can be obtained from the following equation:

fie= —fiaEo+fisE

: EvrfnEr (16)
Ii In the above equation

::‘ . ’ = mlE.,

! fl! I—M;E.

{ 57

L . -"..—'..-' “. Vel L “.'v'.".-" . STt e ety PR Lt T S RN W RS W RN
R e St P PRI I AR ".}'A.".:. LR T EL T RN . * N st
el ettt dendls PO AT TSR T W TR P VW A AT S O e ..". .n.:.\‘_- D _A\‘ n\k" S




Finally, flow parameters behind the wave were determined by m,
and m, using the Ranke-Hugoniot relation.

3. Computation of Surface Points

The same difference scheme as that for internal points is
used to discretize and solve the surface point equation (9). 1In
the modification step, the radial differential af/d€ included in

v
P

the right function is approached by a three point deviation ' ;
difference method. f
4. Tightening of Mesh Points Near the Surface ;

A boundary surface §; = const was set up to divide the %
meshes near the surface. Smaller meshes are used inside and -
larger meshes are used on the outside. If the total number of E
radial meshes is N and the boundary is set up at i = n', then the 5
mesh spring inside (close to the surface of the object) is ]
M= IO

|

Outside the boundary, it is g
Abp=r—L 3

N=ns1 =

Therefore, the meshes near the surface are significantly E
tightened as compared to uniform meshes while the total number of g
meshes does not increase. ﬁ
IV. Calculation of Flow Characteristics at Singularity Points ?
on the Surface g

Because the flow parameters on the intersecting line of the ﬁ
front and rear cones have multiple values, therefore, they must fJ
be solved individually. The specific method is to establish a SE
right angle coordinate (E}, Eé, Eé) at the origin A on the 5{
intersect. Eé is the .direction of the unit normal vector of the :%
front cone surface, Eé is in the direction of the tangent of the P
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P
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Ly

DT IR .
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inner intersecting line and t, is perpendicular to both IZ and 33.

||~

1x
1 X

had I d]

?1=‘ |
(D)
The supersonic flow expands or contracts on the i1-£2 plane /37
so that the flow direction is shifted by a certain angle. The
flow parameters satisfy the two-dimensional Prandtl-Meyer
solution or two-dimensional shock wave correlation. Moreover,

the velocity component along E3 does not change beyond point A.

V. Numerical Examples ]

Several numerical examples are given in the following.

Figure 2 shows the pressure distribution around a bent cone
obtained by the 'parallel advance' and "inclined advance' method.
The "inclined adzance" method began :ith the initial value plane
(6, = 90°) to 6, = 74°, then frome, = 74° to s, = 90°. From
the figure we can see that the results of these two techniques
are identical. The same accuracy resulted.

Figures 3 and 4 show the pressure distribution on the
surface of the object around bent cone A. The geometric
parameters are 6,= 10°, o, = 7°, n* = 8 and oy = 6°.
Furthermore, there is a transition link between the front and
rear cones. Therefore, there are two intersecting lines on the
surface. When the angle of attack is large, the inviscid flow
equation cannot appropriately describe the true flow pattern.
Furthermore, the attack angle of the front cone 8 ont = @ * Oy
in the computation. Therefore, the attack angle range is greatly
related to the degree of bending of the bent cone. In this
example, the largest angle of attack was 14° and the results are
still good.
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Figure 2. Comparison of Pressure Distributions on Bent Cone

by '""Parallel Advance'" and "'Inclined Advance' Methods ﬂi
1. parallel advance solution [2] .
2. 1inclined advance solution -
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Figure 3. Surface Pressure Distribution of Bent Cone A

1. transition section
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Figure 4. Surface Pressure Distribution of Bent Cone A

1. transition section
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Figures 5, 6, and 7 -are the flow field pressure
characteristics and internal shock wave shape of bent cone B (e,
=0, = 7°, oy = 13°) with sideslip. The mesh numbers used in the
calculation were M = 20 (radial) and M = 20 (circumferential).

No filtering was used to smooth the process. The inner shock /38

LRI S SR R

wave position in the figure is determined by the pressure
variation in the flow field. From Figure 7 we can see that the

P N W RN s

g!— pressure change position (i.e., a strong interruption position)
e is very obvious when an inner shock wave appears. Therefore, it
is basically correct to determine the inner shock wave position

Q;Z , based on it. In addition, the result of total entropy was

L2 R LR B W

!_ compared with. From the numerical examples, the calculated

entropy of flow field points and boundary points is in agreement
with that of the incoming flow.
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Shape of Shock Wave of Bent Cone B (expansion
wave not shown)

1.
2.

external shock wave

inner shock wave
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Figure 6. Shape of Shock Wave of Bent Cone B

1. external shock wave

2. inner shock wave
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Figure 7. Pressure Characteristics at Z = 14.4 for Bent

Cone B
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A NUMERICAL COMPUTATION FOR THE INVISCID
SUPERSONIC FLOW AROUND BENT CONE

Ji Chuqun

iBeijing Institute of Aerodynamics)

Abstract

A numerical computation method for the inviscid supersonic flow
around a bent come is given in this paper by using finite-difference method
and shock-capturing technique. In order to overcome the difficulty due
to the bend of the bent cone axis in the advanced process solving equation,
the solving plane of Euler equation is considered as a inclined plane
with the advanced directior using a transform of the equation indepent-
dent variables. The second order, two-step MacCormack scheme is used.

The equation system for boundary compution is derived according to the
characteristic compatibility relations on body surface or shock wave and

corresponding boundary condition. The flow properties of the singular
points on the intersected line between two cone surface are solved indivi=
dually. The non-uniform computation meshes along the direction of
body radius are used in order to raise the computation accuracy when
the gradient of the entropy near body surface is very large. The compu-~
tation results in many numerical examples indicate that good results
can be obtained by means of this method.
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” Theory of Similarity and the Profile of the Mean Density
Distribution of Hypersonic Boundary Layer
Cai Shutang (Department of Modern Mechanics, The
University of Science and Technology of China)
Gao Shouen (Department of Physics, Hangzhou Teachers College)

Abstract

It is well known that in a boundary layer, the variation of [']
the physical quantity along the flow direction (the x direction)
is much smaller than that along the direction perpendicular to
the flow (the y direction). At the same time, the velocity in
the "y'" direction is much smaller than that in the the '"x" !
direction. In this paper, we derive the vorticity pulsating i
equations by means of neglecting the physical quantity variation
in the "x" direction and the velocity variation in the '"y"
direction. In a coordinate system of the average fluid velocity
motion, we introduce the similarity hypothesis to determine the b
pulsating velocity and the pulsating density. Based on the
necessary condition of the pulsating similarity, we find the
equation p = k(y + yo)n
the turbulent boundary layer of the compressible fluid. Although b
this method is very approximate, it conforms to the experimental i
data. This paper demonstrates that in a comparatively large 1
range, the similarity hypothesis is applicable.

as the average density variation rule in

I. Introduction
~ Many papers have been published about the turbulent boundary

layer of the incompressible fluid on a flat surface. Although
some other papers discussed the turbulent boundary layer of the
compressible fluid on a flat surface, yet their discussions were
incomplete, and their selections of the close systems were quite
arbitrary. In this paper we adopt the vorticity similarity
conception to study the profile of the mean density distribution

ma A E ®_a. A 2. M
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of the hypersonic boundary layer. We directly applied Prof.

Zhou Peiyuan's method (published in 1959) of the compressible
fluid vorticity equations. Based on the premise of the

similarity conditions, we obtain a few groups of the related
physical quantity equations. They can be simplified to satisfy
the differential equations for the mean density. After
integrating we obtain an exponent equation for the mean density
profile. This process seems to be too approximate. However, the
mathematical results conform with the experiment results in a wide

range.

II. Vorticity Pulsating Equations of Compressible Fluid

First, let us put down the Navier-Stokes equations for
compressible fluid and the Reynolds equation after the Navier-
Stokes equations being averaged by the Reynolds method, i.e.

2 Uyl ., ..
3 (PU.)+a:i(PU.Ui) -—3%4--6;,-0-1 N

d = - 0 (= = - -
a—'(Pvi'*'p“i)'F-E(PU:UH' Puiu;+p'uilJi+p u;l}:+ p'u;u;)

02, X j . (2) /50

where, U1 = velocity, p' = pressure, p = density, 015 = stress
tensors other than pressure. As to the relation of the mean

quantity and instantaneous quantity, we have
A=Z4+4 , 4'=0
where, A' = physical quantity and A = pulsating quantity. When
we substract (1) from (2), we obtain
L Bu .0 +0 PO+ (BT i+ BT +0°T T
ot ax,
+B U= Biarw + 00— 7w + 00w~ T o7, (3

S VN S
+p “,“, pl‘.l"-) ax"" ax‘ all
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Similarly, we have a continuous equation and an averaged '
continuous equation:

') ;)

3¢ ° +a—x‘(pU,)-o (4)
O =, 0 ,-=—
S P+ (P, +p'u;)=0
ot ox; ' (5)

The subtraction between these two equations results in the
pulsating density equation:

&p +r(p(7 + P u; +pu,-pu )=Q (6)

In equation (3), when we retain the spin factor, cancel "p'",
simplify it with equations (5) and (6), and let

o i 2 g, 30._00:
T 3% 0% | Qa 0x, ax,

then we can obtain the equation to satisfy the pulsating
vorticity Wy

2] L") 9 - -= 0 -
o 3 @i+ p’ a‘-o.n @ua—xir"‘PUi-a—xifmﬁ'P u; a—g’gn‘f' (7)

»

+p U, a Q-A'*‘P “i _a-gll+£tl+le

Jx,
a’a 0o 6'6“
in which, = 0x,0x, ~ 3x.0%,
=08 05 _du 935 . O'B 3F. dp’
Sl T e Tl ( 'dtaz " Stox, )*‘60:_3%
- 90" ¢’ dp rp P
ar oz, T U dtéx = O3rax,F 3tom; P'ui)

-9 .. dp’ - = _ 9 - -
3tax;, P 55 U0~ 530x,001
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6[7,- ap' ¢ ap' . - 2] ap
+ ox; (6;:. us ox; “ )+U' 9x; (ax.

9 _LL 9 o
+a o) Jit+ po.rira (pu)ax.

+p'“:a_x% pu;bxbx. 3—( )U'
2 (1;26) g 28 0 ;28 30

~ 9%, Yi3x, 9x; 'dx, ox;

+ 0 (o 3e)- O (o 35)+ 5

U, .ou, . 35 @
=3z, © 3z, V 9x ox,
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i
w4
ff{ III. Similarity and Mean Density of the Supersonic Boundary
o Layer
. First, let us consider the steady state conditions, in which
bf the partial derivative of the average quantity of equation (7)
o with respect to time is zero. Secondly, when we consider the
supersonic boundary layer, the '"x'" derivative term of an average
quantity can be neglected as compared to its "y" derivative. At
the same time we can omit the velocity terms in the '"y"
o~ direction. Then by adopting Zhou's method, we introduce a
‘T coordination system of motions which varies with the point "Po",
ﬁi and also introduce a similar condition
’ xi-x:) ’ - xi-xl.)
=g\ ———), p'=pél———
* _',;. ] Q¢n( A ( a4
.$ﬁ g - Xz XD
e Let,
b then . . (8)
‘-,‘N- u—.—- i p—’ . -
[0
9 in which "xg", which can usually be considered as the origin, is
- - the coordinate of point "P_ " in the coordinate system of motion.
:j; "x " is the coordinate of a certain point in this system, and "aA"
Eﬂf is the characteristic length of the pulsating quantity. We
Ei: further substitute (8) to the vorticity pulsating equation (7),
o
;:-;::-
® 70
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and eliminate the viscosity terms in (7). 1In this paper, we are Jﬁ
not going to write the details of the derivation because of the o
complexities of these equations. Here we only present the !{
coefficients in front of the nondimensional F(Ei) of all the ;ﬁ
terms in these equations. There are seven different coefficients N
as follows: ;J
Q d —F + 3
o i @ pth‘[ ; o
4
- ¢ dU dU )
—_— 45 dU

3 d-

@-3‘—%:; ® ¢ dp .-,-1
5L
@55 .

In order to obtain the similarity of the pulsating velocity'ﬁﬁ
and the pulsating density "p'" in the profile of the boundary
layer (i.e., in the profile of the boundary layer, the functions
of oh(Ei) and O(Ei) are identical), the ratios of these seven

- P,

L L e e e e R

T L
PPy PP N ST

* .3

constants have to be independent of the "y'" coordinate.
Therefore, coefficient (3) is directly proportional to a
coefficient (4), i.e., Qz

59 dU ., dB dU
P dy “Vdy dy

After eliminating, (dU/dy) ¢ we obtain ﬁxi /53
dy 4 (9)

Similarly coefficient (5) is directly proportional to (6), then
¢ dp __.d'B
A?ﬂqdy

"qz", we obtain fd

When we eliminate

4z 2

Ao —h (10) L.

dy o

When we eliminate "A'" in (9) and (10), we obtain , Ii?
"i‘i

o

-

7 1 ° !_J
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cdB _Pdy"
b dp (11
dy

in which "C" is a constant. Simplifying, we obtain

@5 dp

Y _c_dy

45 F; (N’
Yy

After integrating, we obtain

dp -
la—=C=Clag +1a K
dy (12)

in which 1nK is an integration constant. Simplifying, we obtain
dp =
oy ~Ket :
(12)

After shifting the terms, we obtain

Then after integrating, we obtain
1 =i-cg
1=c? K+yo

in which "yo" is an integration constant. After simplifying, we

obtain 1 1
A=[KQ-O)) T (y+y)T-¢

Let = 1 ‘= - : 54
: = K=lka-O1= /
o B =K (y+yo*
[ we obtain v (13)
e =Y
r! Further, let "=-3
» After dividing "p" with "p_'", we obtain
. =K Wty (14)
[
e
o
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This non-dimensional equation expresses the mean density.

IV. Comparison: Theory and Experiment

Let us use the graphic method to find the accuracy of the
equation by using the x abcissa to represent the data calculated
from the equation (14) and the ordinate to represent the .
experimental data. If the calculated results agree with the
experiment results, then all the corresponding points should fall
on a 45° line from origin. The comparisons are displayed in
Figures 1, 2 and 3. We can see that all the points are
practically falling on the 45° line in each figure. These
figures explain that except on both ends of each line (which show ;
some deviation) the theoretical calculated data essentially agree .

with the experimental results.
V. Discussion
It is concluded that the similarity assumption is quite
approximate, yet it is practical for application. ]

=10 =-0.8 ~0.8 -0.4 -0.2

Bu

s Pa -0
/ -0.4
. ' -C.8
-0.3

g2 % {10 ]

'

Figure 1. P, = 3200cmHg, o= 4 inch, n = 0.98, n,= 0.15,
K' = 0.606 1

1. calculated
. experimental
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1.1—! -0.8
R

Figure 2. P,= 1700cmHg, s = 4.5 inch, n = 0.92, n, = 0.13,
K' = 0.71

1. calculated
2. experimental

-0.2

-0.4

Figure 3. 500cmHg, ¢ = 6 inch, n = 0.88, n, = 0.15,

0.96

P
K
1. calculated

2. experimental
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The Engineering Numerical Technique for the Determination
of the Inviscid Flow Field Heating Rate on Ballistic
Re-entry Vehicles
Yang Maozhao, He Fangshang
(China Aerodynamic Research and Development Center)

Abstract

RVSPHR (The Ballistic Re-entry Vehicle's Shock Pressure and
Heating Rate Computer Code) is an approximate numerical technique
for the determination of the inviscid aerodynamics and heat
transfer of re-entry vehicles. 1In the transonic flow region
surrounding the nose stagnation point, the distribution of the
surface pressure and the shock angles is assigned from the
correlation. With the assumptions for the profiles of pressure
and normal velocity along body-normals in Von Mises coordinates,
local iteration is carried out at each normal to determine the
shape of the shock wave based on mass continuity satisfied along
that normal. In the downstream supersonic regions, the exact
Euler equations of motion are integrated using the finite-
difference method. The surface heating rate is calculated using
a non-inviscid flow. All calculated results are compared with
more rigorous solutions as well as experimental results and good
agreements have been found.

I. Introduction

The determination of the aerodynamic characteristics using the
numerical technique of inviscid flow and the analysis of the
aerodynamic heating process using numerical calculation of the
boundary layer have been successfully carried out. However,
since the rigorous numerical calculation is time consuming and
costly, it has not been widely employed for carrying out the
initial engineering estimations in certain applications. For
engineering application, we have used engineering approximate
solutions for treating the transonic region in rigorous inviscid
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flow calculation. The iterative numerical procedure in solving
the elliptic equations for the subsonic region surrounding the -
nose stagnant point is avoided. This simplifies greatly the
problem of the subsonic region and accelerates the calculation
without sacrificing much of the accuracy or affecting the

solution of the downstream supersonic region. With this -
approach, we have determined the correlation equation of the
surface pressure distribution and the shock angles in the
transonic region around the nose as well as the profiles of
pressure and normal velocity along body-normals in the shock wave
layer. The position of the shock wave corresponding to each
normal on the surface is determined by local iteration or overall
iteration based on mass conservation. The solution of the
transonic region provides the preliminary data of the profiles
for calculating the downstream supersonic region. The exact
Euler equations of motion for the supersonic region are
integrated using a numerical technique with the finite-difference
method.

Although this technique for determining the inviscid flow
field is an approximate method, it is a technique for calculating
the overall flow field in regarding the estimation of pressure
distribution and the shape of the shock on the aircraft. It
provides the necessary data for boundary layer calculations with
consideration of the effects of entropy swallowing. Based on
this technique, we have further derived a method of integration

with the momentum in the boundary layer and a method of entropy

el
.Y

T T es
. SR P
. T N

EEN

swallowing calculation relating to mass balance of the flow. The

[

new technique does not need to carry out iterations on the

AL AL A sy
€

) BTN S

parameters of the outside edge of the boundary layer and much
less computer time is required in calculating the boundary

‘1

e

parameters and the surface heating rate.

TaAF AN

We have carried out calculations on many aircrafts and wind
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tunnel test models. The results are in good agreement with
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these obtained from more rigorous solutions and experimental
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data. There are also significant savings in computer time.
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N II. Summary of the Technique /57
é‘!‘ (1) Technique for the Determination of the Inviscid Flow

o= The purpose of this technique is to avoid the iterative

: calculation in solving the elliptic equation in the subsonic flow
region surrounding the front edge of the passive nose. The

following approximations and assumptions are made in the
o calculation of the transonic flow region around the nose:
;ﬁf 1. The pressure distribution in the transonic region (from

stagnation point to the sonic point) is determined using

(1]

the calculation of the upstream region of the sonic point.

engineering equations. Love's modified equation is used in
Matched Newtonian equations with Prandtl-Meyer expansion are used
for the region after the sonic point. The equations by curve
fitting for the latter are shown in the following:

For M <1.2,

p=p{1+1.08sin°[(x/2) ~6)][exp(—4v/ ln s*/s ) ~11—0.468 exp(—d\/In s%/5)}

2.1-1
For M >1.2,

p=p {1— [1.46143—0f511435in (—;—+0'—0—T58—00—x)]sin‘(% +0'—-0—%n )}
2.1-2
Where @, s, e*, s* are the dip angle and arc length of the
surface at local point and the sonic point respectively. Po is
the pressure at the stagnation point, which can be expressed by

the following equation with ideal gas:

Po=p- (%l M- )”-‘ (2v Mvitlvﬂ )‘/"’ 2.1-3

For equilibrated air, it should be calculated by iteration

;-. from the relations of the thermodynamic characteristics using the
entropy behind the normal shock wave and the accurate enthalpy, hs
, at the stagnation point. All quantities used in this paper are

ﬁéj dimensional and in metric system.
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2. In the shock wave layer with relatively small spherical

angle, the profile of the normal velocity on the surface other
than the flow at the stagnation point can be correlated with the
profile at the stagnation point using the following equation:

v. (§) ..
bty 0 2.1-4

v(y) =
where v, (g) is the normal velocity distribution of the flow at
the stagnation point. v,(ys), v(¢s) are the normal velocities
behind the shock wave at and away from the stagnation point
respectively. The values are fixed with given shape of the shock
wave. Vv,(g) can ve determined using the pressure distribution of
the flow at the stagnation point. According to the numerical

technique for the determination of the inviscid flow[2], P, (£)
can be fitted in the following equation:
p,(f):p'+(p'.._p°)£x 285533 2.1-5

where Psio is the pressure behind the normal shock wave. From
Equation (2.1-5), the enthalpy distribution, h, (¢), can be
calculated and the following equation is obtained:
vo(§) =/ gJ[h, =k, (5)] 2.1-6
In Von Mises coordinates, the relationship of the flow
function and the normal coordinate y is

=purdy 2.1-7
which gives
=T 2cosd{* 1 _ ]
cosf ‘/”“T‘LE“ 1 2.1-8
In the region near the stagnation point, using
€=ya/y..a=y/y. 2 1_9

the £ value corresponding to each point y in the flow at the

79

2 PO UONTDY D DUy, Pl DA W e e e e ‘ U WO Y L PO RIS PR Y VAP Y- T PO T

/58

........

| TP

ot o

U OO

.
vy




R A A S i b PRttt e Bt A G e e ot i e LA i e e v
- - Pt N et Sl Sa nns R TR —y

stagnation point can be easily calculated.
3. The following profile of pressure along body-normals in

the shock wave layer is assumed:

P =put (pa—po) (P/¥)* 2.1-10
where Py is the estimated surface pressure from previous
engineering equations, Psh is the value of the pressure behind
the shock wave in the profile.

4. The initial shape of the shock wave is i

Yoo s=Ya e mYiu idx 2.1-11 3
y;A‘.-na(l+y,..._./R)tg(ﬂ,.,.-.—a._l) 2-:1‘12 :]

J

B v-1=0,5326+0.33336,.,+0.21226: _, 2.1-13 3

The above calculations can be carried out if the distance, Ysh’0® i
from the body to the shock wave on the flow line at the -]
stagnation point is available. The value of Ysh'g ©an be 4
calculated from: R
- 0.77 _ __6M: .

T s L L R X

5

-~

R

For an ideal gas the following equation may be used

2.1-15

Yir o= (o. 13+ °'6137)R,

Mi-1

After obtaining the values of the flow field parameters, p and u,
of the calculating cross-section, the new position of the shock
wave y, can be determined by the requirement of mass continuity,

g which gives

;:1 =0 2cosf(* 1 -

o o=y [V e 1] 2.1-16
,! Since the calculated position of the shock wave may not be

;; consistent with the original positiqn assigned, additional

:} iterations are necessary until the aihults of consecutive

p
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f?i iterations show the desired accuracy. This is the local

3?' iteration process for obtaining the shape of the shock wave.
With this calculation technique, we have also developed an
overall iterative procedure. After obtaining the positions of
the shock wave on the cross-sections along all body-normals by
local iterative procedure, the new distribution of the shock
angles, B;h’ can be obtained by parabolic fit or spline fit of
the shape of the shock wave. Equation:

‘.-- Bt‘(ll.)=ﬁl‘(0|l) +33[ﬂ;l_ﬂ:h(oll)] 2 . 1_17

is used to replace the old equation of the shock angles (2.1-13)
and a new local iteration for the profile along each body-normal
is carried out for further improving the estimation of the
position of the shock wave. Better convergency of the
calculation can be obtained with €y = 0.2~0.6.

The above calculation is carried out from one cross-section

to next cross-section starting frcm the point near the stagnation

:* point until the velocity u reaches the sonic velocity at one
particular cross section. After that the calculation should be
carried out following the procedure for supersonic region.

N Since the calculation in the supersonic region is carried

; out in boundary layer coordinate system (s,y), which is different
from the Von Mises coordinate system ( sr,¢) and the preliminary
cross-section data for the calculation should be obtained by
interpolation, the simultaneous equations, as shown in the
following vectors, for calculation of the supersonic region can
be derived from Euler equations of motion for the stable,

b inviscid and compressible axisymmetric body.

». ac+A§zg—x 2.1-18

where

i

AENL I OBDOIR

/59




AT A B0 0E T e A Al RNALE L SR VL i o S AR S Rl S S B At pes sads Ak wal amaay BNt A e Ao s bns 20 2 e o eaan

A+C pa’H
E Ey. 0
A=] 1 ( o+C H+on 6y,) A+C 0
put E '8 Ox E
i 0 0 A
ME.i(sin f+o0cosb)
x= ‘:Ig: (sin 8+0 cos @) —1—;—0—1
0 ]
oy,
_ oH -y ai _a'n 9y, '
v, €= o E=1-@/w)
a =-($) /(as/ap) s —i# ¢
5 ), , -
f=2x n=yly,(x) o=vlu
H=1+(y/R) =-l/£—f—=—cosﬂ/‘;71' rf =r,+ycosf

At point € = (n +6)AE, n = [m + (1/2)1an, 8 = 0.625 the above
equations can be rearranged in implicit forms to give:

o Taoybosrt Basy bu= Moy 2.1-19
(- AE 4..
- Fay=1+29 > A a?
ok where
A-‘x=l -_._E_ -3
y=1m20 Fy Al
® ] =, Af XX
. n..;={1-2(1-o)A—;A_,;]c:.p[1—2(1 9> ﬁi A;;*]c.— 28870}
[;ﬁ
[-'-f--’
[
§J
-
e ané. I is the unit matrix. Two of the elements can be expressed as
o
::::::,
>.-
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280 = § (AL +AID + A= Frxi, +xD)

The solution of the above finite-difference equations can be /160
obtained by the catching up technique. The recurrence relations
of the coefficients are as follows:

bas = - Aff“' r.’% 2.1-20
e B35 Ta]
“.A;:l H.Ql -G.
G-u' L L
2.1-21

where AE+%1S the inverse ofAm+%, |L--||represents the
determinant.
In addition
Bues C..:=G...
2.1-22
With impermeable body surface, o= 0, then

#ebe=G, 2.1-23

where ”0(0) 1'0)

Go'o

Therefore, the values of uy, G, within the shock wave can be
determined by the recurrence relations starting from the surface
of the body. Combining with the shock wave condition of Rankine-
Hugoniot, €y, is readily obtained from the relation of the shock

e . v & » .

Awm T a3 & »

1
]
\
k
3
N
N
§

wave: bulu=G,
:

Then, the values of .
Cucis Cunty woeomey &, ;

can be obtained from the finite-difference equation (2.1-19) by 3

A1

calculating back to the surface. N

N
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f II. Improved Entropy Swallowing Technique 5&
It is well known that the effects of entropy swallowing of i:

the boundary layer are usually determined by mass balance. The iﬁ

mass flow swallowed by the boundary layer should be equal to the ﬁﬁ

mass flow which passes through the bow shape shock wave along the if

! inviscid flow. The equation of mass conservation of the flow :t
B path can be written as )
':': %P- U.ri=p,url, .
: 2.2-1
where the momentum thickness of the boundary layer, eM, can be []
determined from the following axisymmetric equation of momentum: o

Iterations are needed to converge the values on both sides of
equation (2.2-1). The estimated shock angle (or shock height r.)
c and M. should be
modified continuously. The convergency can be tested by

as well as the values of the parameters Pe» U

substituting the value of ¢ determined from equation (2.2-2) in
equation (2.2-1). This is the iterative process used previously
for entropy change. 1In our analysis, the axisymmetric
integration equation of momentum is written in terms of the total
differential form of the mass flow. Equation (2.2-2) is
rewritten as

d : 1
d—s (o, u.rO.)s—z—p, U rc,— (1+H¢)(Pc Y, '_o.)—.];.‘ dd:' 2.2_3

where H. is the mode parameter depending on the flow. It can be /61
written in the following two expressions for laminar and

turbulent flows respectively.

For laminar flow:

H¢=2.59156 h./hl+hl/h'-l

H.=0,142861,0-71,) 2.2-4
For turbulent flow: I S. h(2" = 2%
) ThoF (h,—h)z+(h,—h,) 2 dz
1 ! h, 2' dz 2.2-5

" [} h.+(’l,-h.)2+ (ht—hl)z’
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where
2Pt g,

L]
gp.uh, (2.2-6)

c¢_ can be related to the heat flux, q , by Reynold's analogy. It
should be noted that equation (2.2-3)wis different from equation
(2.2-2). The mass flow pcucr®y is considered to be a single
parameter and it can be calculated by Euler's method or Runge-
kutta method of integration utilizing the solution of the

is then obtained from equation (2.2-1) and the

RPN T W

inviscid flow. rg

entropy behind the shock wave at position rg can be calculated by

interpolation from the shape of the inviscid shock wave. The
peripheric parameters at the outer edge of the boundary layer, Pe)

s Ue, ‘he, M. can be calculated along the flow using the pressure

c’
distribution of the inviscid flow. Iterative modifications of
the value of du./ds in equation (2.2-3) are carried out. The -

above calculation is made repeatedly with newly calculated u,
value until the convergency is reached. Practically, the

convergency can be reached shortly. It takes much less computer
time than the technique of variable entropy with iterative
calculation on all the peripheric parameters such as p., u. and
hc.This is an improved numerical technique of variable entropy.

III. Results of Calculation and Comparison
All calculated results of the inviscid flow, including shock
shape, surface pressure distribution and the flow field profiles

.
]

N .t 2 LAEERRAFAE RE RS S0 AAD
.'AlL.I‘L(.\“f'L‘i. A R AR AR

through the shock layer, are compared with more rigorous

numerical solutions as shown in Figures 1, 2 and 3.
Calculations are carried out on a semiconic body having a cone
angle of 10° at various Mach numbers and elevations with
equilibrated air and jideal gas. The results indicate that the
shock shape and surface pressure distribution are quite
consistent with vigorous numerical solutions. The position of
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shock wave determined by local iteration and the off-body
distance of the shock wave at the stagnation point obtained by
parabolic interpolation are compared with rigorous numerical
solutions and show relative deviations within 1.1% to 1.8% as
listed in Table 1. The density and velocity profiles of the flow
in the shock layer at M_ = 2.0 are in good agreement with
reference [2]. Some deviation of the pressure profile is
observed near the body surface, while good agreement is
approached near the shock wave.

Mo=7.8 —*t@
=9 o SNW2]

o
-3.0 0 1.0 2.0 30 4.0 650 60
S/Ru

Figure 1. Shock Shape

1. our result

. 2. numerical solutions of [2]
o G
oy &= | ommma} ™
\1400 . T
S300

200

100

.06 0.10 0.15 0.20

X/Ru

Figure 2(a). Surface Pressure Distribution on the Nose

1. ideal gas
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our result
numerical solutions of [2]
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Figure 2(b). Surface Pressure Distribution on the Body E
1. ideal gas %
o 2. our result -
- 3. numerical solutions of [2] 4
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Figure 3. The Flow Field Profiles in the Shock Layer -
. 1. equilibrated air .
N 2. our result R
- 3. numerical solutions of [2] "]
;; Obviously, the approximation technique for the transonic flow =
- region does not cause significant error in overall calculation of 21
EQ the inviscid flow field and much less computer time is required -
p =
N than more rigorous solutions. This technique is very effective
%; and feasible in engineering applicationms.
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. equilibrated air
. 1ideal gas

. our result

. reference [2]

FWN -

We have also made a calculation based on the experimental
model of Widhopf[3] The pressure distribution is shown in
Figure 4. The calculated results are in good agreement with the
experimental results. The calculated heat flux at various flow
conditions is shown in Figures 5, 6 and 7. The experimental
results of reference [3] and the boundary layer numerical
solutions of reference [4] are also shown in the figures. Our
calculated results are quite satisfactory in comparison.

1.0
?/Po
0.8 Q‘,
. Mus=$ -—E
. ane o .
Ry = 0.0634m *.t’]?)
(W
0.2
.1 0.2 0.40.6 1.0 2 4 681

Figure 4. Comparison of the Calculated Pressure Distribution
With Experimental Data

1. our results
2. experimental data of [3]

&/q M=3,8 =9°
T=73.65K
2.0 Ry = 0.0634m
o= 1922.047kg m° \
1.5 -— %X C -
1.0 --".":‘)z
° xu |

0 [} z 3 ¢« SRS

Figure 5. Distribution of Heat Flux

1. our results
2. numerical solutions of [4]
3. experimental data of [3]
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Figure 6. Distribution of Heat Flux
1. our results -
2. numerical solutions of [4] -
3. experimental data of ([3] -
y
b
3
M=S -
& =9 v K
T=73.0°K -_— X . 8
Re = 0.0634m ——gamral O j
P =742, abkg/m* I ]
° mafsl ]
SR | ,
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Figure 7. Distribution of Heat Flux ;
4
1. our results -
2. numerical solutions of [4] 3
3. experimental data of [3] -3
R
Our numerical technique can be extended to three dimensional ¢
calculation with angle of attack using suitable coordinate ;
transformation and analogical approximation of axisymmetry. s
]
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Visualization of Three Dimensional Separated Flows Using

the Smoke Wire Technique
Xia Xuejian
(Beijing Institute of Aeronautics and Astronautics)

Abstract
The smoke wire technique is used for visualizing the vortex
flow at the wake of an axisymmetric body and the asymmetric
vortices which emanated from the nose of the aircraft at high
angle of attack. The smoke wire technique can be employed for
automatic photographs, by the sequential circuit, conditional
photographs or manual operation.

I. Introduction

Various techniques for visualization of the flows have been
applied in aerodyamic research, especially in some complicated
flows such as the separated flow, jet flow and wake flow emanating
from wings and the fuselage at high angles of attack. They are
also effective tools for studying the separated flow and the
structure of the turbulence on nonflying passive bodies.

Recently, various new techniques for visualizing the flows have
been explored.

The smoke wire technique has been applied since the fifties.
Recently, this technique has been gradually used in the
visualization of complicated flows. Reference [1] employed this
technique to visualize the bubble separation of the laminar flow .
and the transition of the boundary layer of the flow about the
wings. It indicates that the technique can be used in flows
which cannot be measured by hot wire probe or pressure

bl

Chet it ead)
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f S . .
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. transducer. We have used the smoke wire technique in studying -
o the three dimensional separated flows such as the wake flow ona

ii three dimensional passive body. The flow pattern exhibited was

[? consistent with the measurements obtained with hot wires.

%’ Various periodic characteristics of the flow were observed :
g _
; 91
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visually. This technique has also successfully detected the
presence of asymmetric vortices emanating from the nose of the
body at high angles of attack without lateral gliding in wind
tunnel experiments. Since the smoke lines are very thin, detail
flow pattern can be observed. This technique can be widely used
in research for its convenience and less environmental pollution.

The limitation of this technique is on the wind speed of the
test. It cannot be applied at high Reynolds Number. Reference
[2] has compared in detail the characteristics of the separated
flows on wings, fuselage and whole body at high angles of attack
tested in water tunnel, wind tunnel and test flight at
corresponding limits of the Reynolds Number. It also analyzed
the effect of Reynolds Number on the separated flows. Since the
separated flows around sharp edges or fixed edges are less
sensitive to Reynolds Number, the smoke wire technique can
provide more quantitative measurement on the flow pattern.
Additional analyses are necessary for more complicated flows
which are affected by the Reynolds Number. The flow spectrum on a
fuselage at high angles of attack using smoke wire technique can
provide qualitative information.

II. The Equipment for Smoke Wire Display and the Technique of
Operation
Figure 1 shows the equipment of smoke wire display for
studying the wake flow. The system consists of three positions:

'"' the first portion is the smoke generator, which is located in the

t?” wind tunnel. The second portion is the process electrical

® system, which includes power source for heating the smoke wire /72
and the synchro control box. The third portion is the light

o source, camera and the activation system (the portion in the dark

[ . shown in the picture).
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Figure 1. Equipment for Smoke Wire Display

| @ 1. The Smoke Wire Generator and the Operation 3
- Figure 2 shows the smoke wire generator which is composed of .
resistance wire, supporting frame, the feedback passage of the
resistance wire. The resistance wire is for generating the smoke
by heating. It can be a tungsten wire, nichrome wire or
stainless steel wire. Stainless steel wire is more favorable
- since it has high resistivity, fixed strength and less tendency
i to become brittle. . The diameter of the resistance wire depends
on the experiment. A size of 0.15mm is suitable in general. For
certain flow conditions which may be distributed by the wire, the
- selection of the diameter should be more careful. Reference (1] h
-ﬁf provides some information on the selection of the wire. It
_ should be noticed that the diameter of the resistance wire
li affects the smoking time. Since the diameters of the oil drops

- attached on a thin wire are smaller, the duration of smoking will r
:Z also be shorter. The tension on the resistance wire will also i
2 affect the mass flow of the smoke. The equipment employs a -
f; tension bolt to adjust the length of the resistance wire. ]
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Figure 2. The Structure of the Smoke Generator
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resistance wire

top bracket

bottom bracket

top support

bottom support

supporting pole

tension bolt for the steel wire
tension bolt for the steel wire
receptacle for conducting ""ire

Specially selected oils should be used for smoke generation.

Smoke o0il for model trains, paraffin oils as well as other oils

have been used in experiments.

Experimental results indicate

that glycerine can provide longer smoking duration and more clear

flow pattern.

wind speed of about 2 M/sec.

The smoking duration can be a few seconds with a

taking photographs.

The duration is long enough for

Various tests have been carried out for selecting a better

method to coat the oil.

The oil can be extruded from the top

bracket by compressed air or dripped down from the top end of the

resistance wire.

It is found by experience that uniform /73

distribution of oil, which gives uniform flow spectrum, can be
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iﬁ obtained by coating manually on the resistance wire with a brush.

- 2. Electrical System of the Smoke Wire Process
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. Figure 3. Circuit Diagram of the Synchro Box
j; 1. flash light
-5 2. flash light
ool 3. conditional output
" 4. auxiliary output
2y 5. smoke wire input
. 6. smoke wire output
7. auxiliary output
° 8. camera
9. camera
10. relay
11. relay
12. gate circuit
13. time delay unit H
"' 14. time delay unit 2
- 15. conditional input j
:
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" 16. 1initiate switch

- 17. potentiometer -1

L 18. potentiometer -2

- 19. rectifying bridge

o 20. voltage stabilizer

§ 21. bypass switch

f5 The sequence of activating the smoke wire and the camera is

- controlled by two time delay circuits. The first time delay unit

‘$j controls the duration of the electric current which passes

o through the resistance wire for heating. The second time delay

X unit controls the delay time before activating the camera. The
time duration of both units is adjusted by the potentiometer.
The arrangement can be changed when using conditional input

o (the flow spectrum is obtained by activating the flash light at

'éf the occurrence of a special event). Figures 3 and 4 show the

o circuit diagram of the synchro box and the distribution of the
o process durations.
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o 2. delay -1
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delay -2 :
conditional input : ¥
output of the flash light and the camera '
auxiliary output

3

4

5

6

7 position 1

8. position 2

9. delayed duration :
10. heating the smoke wire by electricity ' k
11. '"smoke visualized" -
12. 1input=output ’
13. switch off ;
14. switch off ‘
15. 1logic 1 {

16. switch on
17. switch off
18. 1input=output
19. switch off
20. input=output
21. switch off

There are three types of "input'" and "output'" for the
circuitry:

1) Power Input and Output for the Smoke Wire

The timing circuit of the smoke wire is on when the

direct current with variable voltage is connected to the smoke
wire input of the synchro box and the output is connected to the
smoke generator. The "input" and the "output' is connected /174
internally when the "bypass'" switch is on, which bypasses the
timing circuit.

2) Conditional Input and Output

This method can be used to photograph the flow pattern

of a special event. The input signal in this mode should be
compatible with the TTL circuit (integrated circuit of
transistor-transistor logic). During working condition, the
input voltage should be low (Figure 4) at the beginning and jumps F
to a high value when the event occurs. This causes the second )
timing circuit in high voltage at the same moment and provides
output to activate the flash light and the camera. A low current -
(few mAs) triggering circuit can be used for activating the flash j
light. A momentary high current (up to 4 amps, 60 volts)
triggering circuit should be employed to trigger the camera.

v
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It should be noticed that the conditional photograph is
usually carried out in the dark. The shutter of the camera is
open when the "initiate switch" is on. The flash light is
triggered and the film in the camera is exposed for recording
when the conditional event occurs and the '"smoke'" is visible.
The shutter of the camera is closed when the time is out.
Usually the signals of the hot wire can be recorded
simultaneously when the flash light is triggered. Therefore the
flow pattern observed can be compared with the measurements of
the hot wire for studying the flow structure.

3) Auxiliary Input and Output

This is a universal input which makes the system more
flexible in application. It can provide an adjustable auxiliary
output with time delay for any signal input. Usually the best
flow spectrum can be observed a few moments after the resistance

wire is heated. The auxiliary input and output can be used in

such cases for photographing.

One of the above three types of input and output can be
selected as needed for processing.

The principle and the working procedure of the synchro
box of the process circuit have been discussed above. 1In
addition to the synchro box, it needs a power supply with
variable voltage for heating the resistance wire. The current
should be about 2-3 amps and the variable voltage should be in
the range of 0-100 volts. Figure 5 shows the circuit diagram of
the power source for heating.

e L

Figure 5. Circuit Diagram of the Power Source for Heating
the Smoke Wire

1. momentary switch
2. switch
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3. Light Source and the Photographic System R

Strobe light was used as the light source on top of the wind =

tunnel for studying the wake flow. The frequency of the flash ﬁ

was adjustable from 1-13/sec. A plane light source was employed ;

for obtaining the flow pattern of a cross-section of the three 4

dimensional flow. The camera was a regular one of type 135. The =
shutter was activated by a compressed air switch controlled by

the triggering circuit with the application of the auxiliary
input/output.

Described above is the smoke wire technique which we have
used to investigate the wake flow of a three dimensional passive
body. Recently, we visualized the separated flow with positive
results at high angle of attack using a simple manual operation.
The equipment included a smoke generator, a coupling transformer
and a resistance wire heated by AC. Pictures were taken at the
best conditions depended on visual observation with naked eye.
The smoke wire technique with manual operation is simple and easy
when the conditional photograph is not necessary and manpower is
available.

III. Examples of Visualization of the Three Dimensional /75
Separated Flows Using Smoke Wire Technique

Hot wire measurement of the wake flow of an axisymmetric
body with declined base surface indicates that a strong periodic
flow appears near the wake at certain angles of decline (such as
70°, 60°). The periodic phenomenon becomes less regular with a
declining angle of 90° (vertical tail cut). The result has been
demonstrated by visualizing with smoke wire. Pictures 3 and 2 of
the flowpatterns obtained by the smoke technique (with base angle
of 70° and 90°) are shown in the inside back cover. The front
end of the model was a semi-ellipsoid and the crabbing angle and
angle of attack were zero.

Picture 1 indicates clearly the regular separation of the
vortex which is more serious at the top than at the bottom. The
same characteristic was also detected by hot wire measurement.
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The separation of the vortex with z base angle of 90° as shown in
Picture 2 was less regular than that at an angle of 70°, while
the intensity was about the same from top to bottom. Intensive
vortices occurred only occasionally. This characteristic is
consistent with that obtained by hot wire measurement. The
detailed results were reported in reference [3].

Picture 3 (inside back cover) is the photograph of the
vortex flow emanating from the nose of the body at high angle of
attack obtained by smoke wire technique. The flow pattern is
quite similar to that obtained in water tunnel testsas reported
in reference [2] (Figure 31 in reference [2]).

Figure 6 is a sketch of Picture 3. The model is at zero
crabbing angle and with an angle of attack of 46°. The picture
shows clearly two asymmetric vortices emanat ing from the front
edge of the nose. The center portions of the vortices are shown
in the picture. The vortex at the left side is at higher
position than the one at the right side. The left vortex
proceeded a longer distance before breaking apart while the one
at the right side broke into spiral eddies moving in reversed
direction. According to the analyses for slim fuselage in
reference [2], the angle to initiate the asymmetric vortices is
slightly retarded and the lateral position of the vortices is
moved outward somewhat at low Reynolds Number. However, it has
qualitatively recognized the asymmetry and the breakdown of the
vortices.
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8=0°,a=46°
Figure 6. Sketch of the Breakdown of the Asymmetric Vortices
at the Nuse of the Fuselage

. left vortex

. right vortex

. asymmetry of the vortex
. breakdown of the vortex
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Picture 4 (inside back cover) (from reference [4]) shows the
back vortex on the right side of the body with an angle of attack
of 31°. The swirl and the position of the center of the vortex
are clearly observed.

IV. Conclusion
The smoke wire technique can be used to visualize the two
and three dimensional stable flows as well as three dimensional
separated flows. It can provide quantitative as well as

qualitative information on the characteristics of the separated
flows. It can be employed to take conditional photographs of the
flow pattern at certain special occasions. The method is simple
and flexible. It can provide the detailed structures of the
flows. The smoke wire technique is an effective tool for
studying complicated flows.
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Picture 3 is photographed in cooperation with Shen Xialing
of the Project Group.
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VISUALIZATION OF THREE DIMENSIONAL
SEPARATED FLOWS USING THE
SMOKE WIRE TECHNIQUE

Xia Xuejian

(Beijing Institute of Aeromautics and Astronautics)

Abstract

The smoke wire technique is used for visualization of the vortex
flow in the near wake of an axisymmetric body and the asymmetric
vortices which emanate from the nose of body at high angles of attack,
as well as the vortex breakdown above the wing. The smoke wire techni-
que is available for automatic photograph by the sequential circuit, con-
ditional photograpbs or manual operation.
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The Application of Surface Hot Film in Aerodynamic Testing -
Wang Tiecheng

P

(Nanjing Aeronautical Institute)

Abstract ‘ -
Investigation of the boundary layer by means of measuring i}
the magnitude and direction of the wall shear stress is ve